Rechnernetze

Telematics I

Chapter 6 Internetworking

(Acknowledement: These slides have been compiled from H. Karl's set of slides)

Telematics I (SS 2024): 06 - Internetworking

So far: we can communicate between nodes all connected directly to the same medium

How to grow beyond a single medium?
What options exist to interconnect local networks into larger configurations?

- Repeaters, hubs, bridges, switches, routers, gateways

What are their limitations?
How does it relate to the networking layer in the ISO/OSI stack?
[LAN interconnection

- Physical-layer interconnects

Data-link-layer interconnects

- Higher-layer interconnects

TELEMATIK
Rechneryetze

The Problem

L Let's start from classic Ethernet

- Single wire, single collision domain

Works fine for a limited number of stations
Collapses when number of nodes becomes too large
CSMA/CD will not keep up, limited bandwidth
! Multiple LANs are necessary
\square Not an inherent Ethernet problem
Will happen on any medium, with any protocol

Limited number of users/throughput in a single LAN

- Historical reasons
\square Different groups started out individually setting up networks
- Usually heterogeneous
- Geographic distribution of different groups over different buildings, campus, ...
- Impractical/impossible to use a single LAN because of distance

Long round-trip delay will negatively influence performance

- Reliability
- Don't put all your eggs into one basket
- "Babbling idiot" problem
- Security
\square Promiscuous operation - contain possible damage

Several Options to Overcome Some of These Limitations

Can be classified according to the layer in which they work

Application layer	Application gateway
Transport layer	Transport gateway
Network layer	Router
	Bridge, switch
	Repeater, hub

- LAN interconnection
- Physical-layer interconnects
- Data-link-layer interconnects
- Higher-layer interconnects
- Simplest option: Repeater
\square Physical layer device
\square Connected to two cables
\square Amplifies signal arriving on either one, puts on the other cable
Essentially an analog amplifier to extend physical reach of a cable
- Combats attenuation

Neither understands nor cares about content (bits) of packets
Signal in

- Similar to repeaters: Hubs
- Connects multiple cables electrically, not just two
\square Usually, does not amplify the signal
also physical layer device
\square Also does not understand or process content of packets
\square All connected cables form a single collision domain

TELEMATIK
Rechnernetz

Physical Layer Solutions Not Satisfactory

Physical layer devices - repeater, hub - do not solve the more interesting problems
E.g., how to handle load

- Some knowledge of the data link layer structure is necessary
\square To be able to inspect the content of the packets/frames and do something with that knowledge
! Link-layer solutions
- Bridge \& switch

Switch: Interconnect several terminals
Bridge: Interconnect several networks
But terms sometimes used interchangeably

- LAN interconnection
- Physical-layer interconnects
- Data-link-layer interconnects
- Higher-layer interconnects

Switch

- Use a switch to connect several terminals without forming a single collision domain
- A switch:

Stores and forwards link layer frames (e.g. Ethernet)

When frame is to be forwarded on segment, uses CSMA/CD to access segment

- Inspects an arriving packet's addresse and forwards its only on the right cable
- Does not bother the other terminals

- Needs: buffer, knowledge where which terminal is connected

How do determine onto which LAN segment to forward frame?
\square Looks like a routing problem...

Determining Directions: Self Learning

- A switch has a switch table

E Entry in switch table:
(MAC Address, Interface, Time Stamp)
Stale entries in table dropped (TTL can be 60 min)

- Switch learns which hosts can be reached through which interfaces
When frame received, switch "learns" location of sender: incoming LAN segment ("backward learning")
Records sender/location pair in switch table

When switch receives a frame:

index switch table using MAC dest address
if entry found for destination
then\{
if dest on segment from which frame arrived then drop the frame
else forward the frame on interface indicated
\}
else flood

forward on all but the interface on which the frame arrived

Bridges

- Switches are limited in that they connect simple terminals
- Sometimes, entire networks have to be connected: Bridges
Bridge also inspects incoming packet and forwards only towards destination
\square How to learn here where destination is? Does simple "backward" learning suffice?
Each network connected to a bridge is a
 separate collision domain
- Bridges can also interconnect different LAN types

Not possible on physical layer only

- Typical combination: Bridge as "just another terminal" for a switch

Backward learning is trivial in a switch - how about a bridge?

- Example: A sends packet to E

Suppose bridges B1 and B2 know where E is
B2 will see A's packet coming from LAN2
Since B2 does not know about LAN1, B2 will assume A to be on LAN2
Which is fine! B1 will forward any packet destined to A arriving at LAN2 to LAN1, so that works out nicely

- In previous example:

How does bridge B2 know initially where node E is?
A Answer: It does NOT know
Option 1: Manual configuration - not nice!
Option 2: Do not care - simply forward the data everywhere for an unknown address

- Except to the network where it came from

Algorithm is thus:
\square flood if not known, or
discard if known to be not necessary, or
forward specifically if destination is known

Flooding by Bridges - Problems

Previous "backward learning by flooding" is simple, but problematic

- Consider example topology:

Second bridge for reliability

When B2 hears packets flooded from B1 it will flood them as well...
... and vice versa!
How to avoid such packet loops?

U Unrestricted, brute-force flooding evidently fails
Avoid packet looping indefinitely by remembering which packets have already been forwarded
\square If already seen and forwarded a packet, simply drop it

- Requires: State \& uniqueness

Bridges have to remember which packets have passed through
\square Packets must be uniquely identifiable - at least source, destination, and sequence number are necessary to distinguish packets

- Big overhead!

State is a problem, as is time to search this amount of state \square Usually not used

Note: Restricted flooding is still important for control packets, in wireless networks, ...

Solution 2: Spanning Trees

Packet loops are caused by cycles in the graph defined by the bridges
Think of bridges as edges, LANs as nodes in this graph
Redundant bridges form loops in this graph
Idea: Turn this into a loop-free, acyclic graph
Simplest approach: Compute a spanning tree on this LAN-bridge graph
Simple, self-configured, no manual intervention
But not optimal: actual capacity of installed bridges might not be fully exploited

Definition spanning tree: Given a graph $G=(V, E)$, a spanning tree $\mathrm{T}=\left(\mathrm{V}, \mathrm{E}_{\mathrm{T}}\right)$ is a subgraph of $\mathrm{V}, \mathrm{E}_{\mathrm{T}} \subseteq \mathrm{E}$, which is a tree (in particular, connected and acyclic)

Traditionally, distinction between switch and bridge made sense \square Bridges need more memory for storing addresses
Bridges need to implement spanning tree algorithm
Today: most devices contain both types of functionality

Often more a marketing distinction than a technical one

- LAN interconnection
- Physical-layer interconnects
- Data-link-layer interconnects
\square Higher-layer interconnects

All devices so far either ignored addresses (repeaters, hubs) or worked on MAC-layer addresses (switches, bridges)

- For interconnection outside a single LAN/connection of LAN, these simple addresses are insufficient
Main issue: "flat", unstructured addresses do not scale
\square In spanning tree, there is an entry for every device's designated output port!
\square Need more sophisticated addressing structure and devices that operate on it
- Routers and routing!

Treated in the next chapter

If even routers will not do, higher-layer interconnection is necessary: Gateways
\square Work at transport level and upwards
E.g., application gateways transforming between HTML and WML/HTTP and WAP
\square E.g., transcoding gateways for media content

- Problem: LANs/switches are geared towards physical proximity of devices
- But: LANs should respect logical proximity
- Connect devices of working groups together, irrespective where they happen to be located
- Idea: put a virtual LAN on top of an existing physical LAN
- Switches (or bridges) need configuration tables which port belongs to which VLAN
- Only forward packets to ports of correct VLAN

- Membership of incoming packets determined by port, MAC address! VLAN mapping, or IP address ! VLAN mapping
- Buzzword: IEEE 802.1Q

Conclusions

Single LANs are insufficient to provide communication for all but the simplest installations

- Interconnection of LANs necessary
- Interconnect on purely physical layer: Repeater, hub

I Interconnect on data link layer: Bridges, switches
\square Interconnect on network layer: Router

- Interconnect on higher layer: Gateway
\square Problems
E.g., redundant bridges can cause traffic floods; need spanning tree algorithm
Simple addresses do not scale; need routers

