
Saad Saleh, Sunny Shu and Boris Koldehofe. dAQM: Derivative-based Active Queue Management. In Proceedings of the 23rd IFIP
Networking Conference, IFIP, 9 pages, 2024.

dAQM: Derivative-based Active Queue Management
Saad Saleh∗†, Sunny Shu∗, Boris Koldehofe†‡

∗Bernoulli Institute, University of Groningen, Netherlands
†CogniGron (Groningen Cognitive Systems and Materials Center), University of Groningen, Netherlands

‡Department of Computer Science and Automation, Technische Universität Ilmenau, Germany
s.saleh@rug.nl, s.shu@student.rug.nl, boris.koldehofe@tu-ilmenau.de

Abstract—The network systems build heavily on Active Queue
Management (AQM) algorithms for maintaining an optimal
queue size and avoiding issues like Bufferbloat. Despite promising
performance, the current AQM algorithms face a major challenge
of estimating the accurate congestion due to bursty network
traffic. The major reason is the use of baseline traffic features
like average delay and sojourn time. In this paper, we propose
a novel AQM algorithm, called dAQM, which uses advanced
traffic features like three higher-order derivatives of sojourn
time and buffer size for computing the packet drop probability
based on the network congestion. The higher-order derivatives
of sojourn time and buffer size provide the rate of increase of
packet accumulation in the queues. We show the programmability
and performance analysis of dAQM over five traffic distribution
models (Pareto, Poisson, etc.) for five widely used traffic classes.
The analysis over ns-3 simulations showed that dAQM provides
at least 28% and 62% improvement in delay and queue length,
respectively, for an increase in traffic load as compared to
the traditional AQM algorithms. dAQM also reduces the flow
completion time for long flows, i.e., FTP traffic, by at least 39.7%
as compared to the prior AQM algorithms.

Index Terms—Active Queue Management; Congestion control;

I. INTRODUCTION

The network systems require an optimal queue size inside
switches, routers, and data centers to provide satisfactory Qual-
ity of Service (QoS) to end-users. A large queue size increases
the end-to-end latency resulting in issues like Bufferbloat [1].
On the contrary, a small queue size increases the packet
losses resulting in decreased throughput. In order to maintain
an optimal queue size, Active Queue Management (AQM)
algorithms like Random Early Detection (RED) [2], Controlled
Delay (CoDel) [3] etc., are used for selectively dropping
the packets based on congestion. Despite the promising per-
formance, the state-of-the-art AQM algorithms face a major
challenge of accurate congestion estimation due to bursty
network conditions. The major reason is the use of baseline
queue statistics for congestion estimation e.g., average delay
and sojourn time for RED and CoDel, respectively. As a result,
packets in the queues with large delays are dropped even if
the trends show that the packet arrival rate is decreasing and
the queue can manage the packets. It deteriorates the QoS due
to excessive packet losses and large delays. These limitations
motivate the use of advanced traffic statistics like derivatives
of packet delay for computing the Packet Drop Probability
(PDP) based on the rate of change of queue congestion.

In this paper, we propose a novel derivative-based AQM al-
gorithm called dAQM. Building on [4], dAQM uses advanced
traffic features like higher-order derivatives of sojourn time and
buffer size for computing the PDP. The higher-order deriva-
tives provide an insight into the rate of change of network
congestion. For example, the first-order derivative of sojourn
time shows the sharp arrival or departure rate of network
traffic. It also provides an insight into the local minima or
maxima of the sojourn time which aids in estimating the PDP.
The second and third-order derivatives of sojourn time provide
additional insight into the bursty periods of the network traffic.
The traditional AQM algorithms do not take into account
the buffer capacity and require separate buffer management
algorithms to avoid packet losses due to buffer overflows [5].
The dAQM algorithm includes the first, second, and third-
order derivatives of buffer size for estimating the PDP based
on varying buffer sizes and avoiding buffer overflows.

The incorporation of advanced traffic features for dAQM
algorithm brings several challenges like the design and con-
figuration of higher-order derivatives based AQM. It motivates
the first research question, “How can we design and configure
the dAQM algorithm relying on higher-order derivatives of
sojourn time and buffer size?”. Since the estimation of deriva-
tives relies strongly on the incoming traffic statistics, it requires
an understanding of various traffic distribution models like
Poisson, Weibull, and Pareto, etc., for different traffic classes
like Streaming, Gaming, VoIP, HTTP, and FTP. It motivates
the next research question, “How would the dAQM perform
under various traffic classes and variation in traffic loads,
packet sizes, and drop rates building on different transport-
layer and application-layer protocols?”. Lastly, it requires an
understanding of the feasibility and performance of the dAQM.
It motivates the last research question, “What are the tradeoffs
and performance gains in using dAQM for long and short flows
as compared to the traditional AQM algorithms?”.

Contributions and Research Findings. In this paper, we
develop a novel derivative-based dAQM algorithm for accurate
estimation of the PDP. Our major contributions are as follows;
(1) Incorporating advanced traffic features, like higher-order
derivatives of sojourn time and buffer size, for the development
of a novel programmable dAQM algorithm; (2) Understanding
of the performance of dAQM by variation in traffic loads,
packet sizes, and drop rates; (3) Analysis of the dAQM
over five traffic distribution models (Poisson, Weibull, Pareto,

© IFIP, 2024. This is the author’s version of the work. It is posted here by permission of IFIP for your personal use. Not for redistribution. The definitive
version was published in 2024 IFIP Networking Conference, ISBN 978-3-903176-63-8, 2024.

mailto:s.saleh@rug.nl
mailto:s.shu@student.rug.nl
mailto:boris.koldehofe@tu-ilmenau.de

Saad Saleh, Sunny Shu and Boris Koldehofe. dAQM: Derivative-based Active Queue Management. In Proceedings of the 23rd IFIP
Networking Conference, IFIP, 9 pages, 2024.

CBR, VBR) for Streaming, Gaming, VoIP, HTTP, and FTP;
(4) Performance comparison of dAQM with state-of-the-art
AQM algorithms including RED, PIE, CoDel, FQ-CoDel, and
COBALT. We’ve publicly released all our research artifacts to
aid reproducibility and future work at [6]. Our analysis shows
that dAQM provides maximum programmable configurations
in Packet Loss Ratio (PLR), queue length, and sojourn time
based on the application requirements. Under heavy traffic
loads, dAQM provides at least 28% and 62% improvement
in delay and queue length, respectively, as compared to the
traditional algorithms. For smaller packet size transmissions,
dAQM shows an improvement in queue length and sojourn
time by at least 57% and 76% over the prior algorithms. dAQM
reduced the Flow Completion Time (FCT) from 25-30 s to
15.3 s for FTP traffic which is a reduction of at least 39.7%
as compared to the prior algorithms. The research shows that
no single AQM fits the needs of all traffic classes and models,
and the use of derivative-based dAQM can adapt to network
conditions for handling the needs of various traffic classes.

Paper Organization. Sec-II summarizes the related work.
The problem statement and proposed approach have been
presented in Sec-III and Sec-IV, respectively. Sec-V and
Sec-VI show the modeling and performance analysis of
dAQM. Sec-VII presents the discussion including feasibility
and salient features. Finally, Sec-VIII concludes the paper.

II. LITERATURE REVIEW

In this section, we present some of the most widely used
AQM algorithms and the recent research in AQM techniques.

RED uses an Exponential Weighted Moving Average
(EWMA) of packet delay to drop packets with a programmed
probability [2]. Despite the remarkable performance, the algo-
rithm suffers from the fair-queuing issue where non-responsive
flows increase their share of queue. An improvement of
RED, called FQ-RED [7], has introduced the fair-queuing
mechanism for handling different traffic classes separately.
However, the programming complexity and handling of bursty
network traffic are major limitations of RED and its variants.

CoDel uses the sojourn time to estimate the queue con-
gestion [3]. If the sojourn time is greater than the target
delay (5 ms) for 100 ms, it starts dropping the packets until
the delay is less than the target. An improvement to CoDel,
called Fair/Flow Queue CoDel (FQ-CoDel) [8], introduced fair
queuing to handle all traffic classes separately. Despite being
a knobless protocol (with two already configured parameters),
strong reliance on sojourn time limits its ability to view the
accurate congestion state and handle bursty network traffic.

Proportional Integral Controller Enhanced (PIE) is a light-
weight AQM algorithm [9]. It uses the average dequeue
rate to compute the PDP. Based upon the congestion after
packet drops, PIE periodically adjusts the drop probability.
An improvement, PI2, simplifies the tuning method by using
the squared drop probability metric [10]. The major limitation
is its poor performance for bursty network traffic. Another
algorithm, BLUE, uses the PLR and link idle statistics for
calculating the PDP. As compared to RED, BLUE provides

better PLR and manages the buffer size optimally. Several
AQM techniques combine multiple algorithms e.g., CoDel
and BLUE Alternate (COBALT) combines the CoDel and
BLUE for leveraging the advantages of both algorithms [11].
CAKE [12], combines the COBALT with a traffic shaper and
flow isolation module to implement fair queuing AQM.

AQM techniques have also been developed by using special-
ized traffic features like disturbance observer and smith predic-
tor [13], traffic load pattern [14], buffer size with delay [15],
traffic labels [16], traffic classes like best effort, real-time and
low latency [17], traffic categorization and prioritization [18],
and actively sensing queuing delay [19]. Many researches
focused on developing techniques for the PDP computation
like reinforcement learning-based drop decisions [20], policy-
oriented drop probability based upon the delay and resource
utilization [21], flow statistics-based drop estimation [22],
and multiple priority-based queues [23]. Several researches
focused on parameter tuning using specialized algorithms
like reinforcement learning [24], model predictive control
theory [25], and reparametrization techniques [1]. A major
challenge for the traditional AQM algorithms is the handling of
bursty network traffic. It necessitates the development of AQM
algorithms relying on a wider range of network statistics, like
higher-order derivatives of delay, for accurately estimating the
state of congestion in the queues and computing the PDP.

III. PROBLEM STATEMENT

The estimation of accurate queue congestion is a quite
challenging task due to the continuously varying network
traffic containing bursts, jitters, and delays. In this paper, we
focus on the understanding of advanced traffic features, like
the higher-order derivatives of packet delays, for computing
queue congestion. The accurate queue congestion can be used
for the estimation of precise PDP to minimize the packet losses
and enhance the QoS for end applications.

In order to understand the use of advanced traffic features
and limitations of traditional AQM algorithms, consider the
corner cases presented in Fig. 1, and shown below. A high
sojourn time greater than the threshold time gives an indication
of network congestion, but the precise metric is the rate of
change of sojourn time. If the rate of change is zero (case-1),
it indicates a less congested situation than the scenario where
the rate of change of sojourn time is a positive constant
(case-2). A positively increasing rate of change of sojourn time
provides information about the sharp increase in sojourn time
and the PDP has to be the highest (case-3). The traditional

(a) Case-1. (b) Case-2. (c) Case-3.

Fig. 1: The corner cases for variable changes in sojourn times.

Saad Saleh, Sunny Shu and Boris Koldehofe. dAQM: Derivative-based Active Queue Management. In Proceedings of the 23rd IFIP
Networking Conference, IFIP, 9 pages, 2024.

protocols like RED, CoDel, etc. are unable to differentiate
between the various scenarios due to their strong reliance on
raw statistics of average delay and sojourn time, respectively.
These shortcomings can be bypassed by using additional queue
features, like the derivatives of sojourn time and buffer size.
However, the algorithm design, configurability, and perfor-
mance of additional features requires further research.

Corner cases for queue management
Sj= Sojourn time; tj= Timestamp; Ts= Threshold; c = Constant.
Case-1: Sj > Ts & ∆Sj/∆tj = 0
Case-2: Sj > Ts & ∆Sj/∆tj = c & c = positive
Case-3: Sj > Ts & ∆Sj/∆tj = Increasing
Case-4: Sj > Ts & ∆Sj/∆tj = c & c = negative
Case-5: Sj > Ts & ∆Sj/∆tj = Decreasing
Similarly, the 5 corner cases for change in buffer size.

IV. PROPOSED DAQM ALGORITHM

We have proposed a novel queue management algorithm,
called dAQM, for improving the robustness and adaptiveness
of AQM techniques. In this section, we describe the details of
the features, algorithm, and programmability of dAQM.

A. Traffic features for dAQM

dAQM uses eight queue features that can estimate the
congestion in a robust network. These features include the
sojourn time, buffer size, and the consecutive three higher-
order derivatives of sojourn times and buffer sizes. The raw
sojourn time and buffer size are used as baseline statistics
for managing the target limits for lower and upper thresholds
of delay and packet loss. An extremely high sojourn time
should result in a maximum PDP. If sojourn time is less
than the threshold limit, the PDP is a function of the rate
of increase of packet delay. The higher-order derivatives of
sojourn time and buffer size provide information about the
rate of change of congestion in the queues. The first-order
derivative (similar to velocity) provides the rate of increase of
packet accumulation in the queues. Using first-order derivative,
the drop decisions can be made timely by observing the
trends of increase or decrease in packet delay. The second-
order derivative (similar to acceleration) provides an enhanced
congestion view by showing the rate of change of first-order
derivative. Using second-order derivative, the PDP can also
change sharply based upon the rate of change of packet delay
and buffer size. Lastly, the third-order derivative (similar to
jerk) provides information about network traffic fluctuations,
like packet bursts, by showing the change in the second-order
derivative. The higher-order derivatives act as advanced traffic
features for estimating the trends of network congestion.

B. dAQM Algorithm

The queue management algorithm of dAQM built over the
higher-order derivatives of sojourn time and buffer size, is
shown in Algo-1. Before the execution of dAQM, the threshold
parameters (TS , TB , T , Dr, Dd, N) are initialized. In these
parameters, TS and TB correspond to the maximum allowed
sojourn time and buffer size. T refers to an array containing
the derivative thresholds for sojourn time and buffer size. Dr

and Dd are the drop rates and drop durations for the N
(eight) traffic features. After the initialization, the incoming
packets are timestamped while entering the queues to record
the sojourn time. The execution of dAQM consists of four
phases; (1) Preprocessing phase, (2) Feature extraction phase,
(3) Detection phase, and (4) Dropping phase.

Preprocessing Phase. The raw statistics of sojourn time
and buffer size are collected at the dequeuing by using the
marked timestamps and length of the queues. Sojourn time is
collected for every dequeuing packet while the buffer size is
computed after a programmed interval tb.

Feature Extraction Phase. Based upon the raw sojourn
time and buffer size, the advanced six features are computed by
the dAQM algorithm. These features include the three consec-
utive higher-order derivatives of sojourn time and buffer size.
The first, second, and third-order derivatives are computed by
using at least 2, 3, and 4 packets, respectively.

Detection Phase. The detection phase matches the N
extracted features with the programmed thresholds (T , TS ,
TB) to identify the state of congestion in queues. The match
process is executed based on the sensitivity and critical nature
of the features such that the higher-order derivatives have
higher priority than the lower-order derivatives. For example,
the third-order derivative shows fluctuations in traffic bursts
and it carries higher priority in the match process than the
second-order derivative. To handle traffic bursts, dAQM checks
that the raw sojourn time and buffer size must be greater
than the programmed threshold. If any features match the
programmed thresholds, dAQM marks the corresponding flags
and enters the dropping phase. In case of no match, the
algorithm exits without entering the dropping phase.

Dropping Phase. The role of the dropping phase is to
estimate the PDP by using the programmed drop rates and
drop durations for the respective queue features. The drop
rates can vary based on the respective traffic features and
packets are dropped based on the PDP. As every feature has a
different priority, dAQM allows the provision of unique drop
rates and durations. For example, sojourn time crossing the
threshold can have a higher drop rate than the third-order
derivative which shows only fluctuations in network traffic.
After dropping the packets, dAQM recalculates the features
to update the programmed drop probability based on the
feedback. Finally, it exits the dropping phase after resetting
the corresponding marked flags of the network congestion.

C. Programmability of dAQM

The programmability of dAQM strongly relies on the
underlying network properties and traffic requirements. In
this section, we discuss the programmability of dAQM with
mathematical notations shown in Tab. I.

(a) Programming the sojourn time limit. At any instant,
the sojourn time sj(t) must be less than the maximum allowed
latency limit lmax,j for any flow (Eq. 1). It ensures that the
packets reach the destinations within the guaranteed QoS. The
latency limit lmax,j is defined by the delay requirement of the
traffic class (dflow,j) and number of hops (n) between sender

Saad Saleh, Sunny Shu and Boris Koldehofe. dAQM: Derivative-based Active Queue Management. In Proceedings of the 23rd IFIP
Networking Conference, IFIP, 9 pages, 2024.

Algorithm 1 The proposed dAQM algorithm.
1: Initialization:
2: Program TS , TB , T [1 : 8], Dr[1 : 8], Dd[1 : 8], N ;
3: Enqueue:
4: Timestamp the packet;
5: Dequeue:
6: Preprocessing Phase:
7: Calculate the Sojourn time (Sj) and Buffer size (Bj);
8: Feature Extraction Phase:
9: Compute the 1st, 2nd and 3rd derivatives of Sojourn time;

10: Compute the 1st, 2nd and 3rd derivatives of Buffer size;
11: Detection Phase :
12: if d3/dt3(Sj) > T [8] ∧ Sj > TS then
13: f[8] ← 1;
14: Enter Dropping phase;
15: else if d3/dt3(Bj) > T [7] ∧Bj > TB then
16: f[7] ← 1;
17: Enter Dropping phase;
18: else if d2/dt2(Sj) > T [6] ∧ Sj > TS then
19: f[6] ← 1;
20: Enter Dropping phase;
21: else if d2/dt2(Bj) > T [5] ∧Bj > TB then
22: f[5] ← 1;
23: Enter Dropping phase;
24: else if d/dt(Sj) > T [4] ∧ Sj > TS then
25: f[4] ← 1;
26: Enter Dropping phase;
27: else if d/dt(Bj) > T [3] ∧Bj > TB then
28: f[3] ← 1;
29: Enter Dropping phase;
30: else if Sj > T [2] ∧ Sj > TS then
31: f[2] ← 1;
32: Enter Dropping phase;
33: else if Bj > T [1] ∧Bj > TB then
34: f[1] ← 1;
35: Enter Dropping phase;
36: end if
37: Dropping Phase:
38: for k = 1← 1 to N do
39: if (f[k]==1) then
40: Calculate PDP for the drop rate Dr[k];
41: Drop packets for the drop duration Dd[k];
42: Recompute the derivatives after packet drop;
43: Drop again if high derivative;
44: Update the Dr[k] and Dd[k];
45: f[k] ← 0;
46: Exit the Dropping phase;
47: end if
48: end for

and receiver (Eq. 2). Moreover, the multiple of the number
of queued packets bj(t) and the processing time per packet
Tproc,j(t) must be less than the latency limit (Eq. 3). It ensures
that dAQM drops the packets that cannot be delivered to the
receiver within the required latency limit.

sj(t) ≤ lmax,j ; ∀t ∈ T,∀j ∈ J (1)

lmax,j = dflow,j/n; ∀j ∈ J (2)

Tproc,j(t) ∗ bj(t) ≤ lmax,j ; ∀t ∈ T,∀j ∈ J (3)

TABLE I: The notations used in the description of dAQM.

Notation Meaning Notation Meaning
lmax Latency limit in queue Tproc(t) Processing time
td Processing duration Ttr(t) Transmission rate

sj(t) Sojourn time b(t) Buffer capacity
Tarr(t) Packet arrival rate Lb Upper buffer limit

Ls Upper latency limit bmax Max. buffer size
tb Sampling interval n Nodes in network

dflow Delay requirement/flow J Traffic classes

(b) Programming the buffer size limit. In dAQM, the
number of packets bj(t) in the queue must be less than
the capacity of the queue bmax,j (Eq. 4). This constraint
ensures that dAQM drops the packets that cross the available
capacity limit. The difference of packet arrival rate (Tarr(t))
and transmission rate (Ttr(t)), and the already stored packets
(bj(t−1)) must also be less than the maximum queue capacity
(Eq. 5). It ensures that incoming packets and already queued
packets never cross the upper capacity limit of the queue to
avoid buffer overflow. The threshold of bj(t) is determined by
the hardware configuration and capacity limit of the flow per
queue. Critical flows like real-time applications are assigned
more capacity than the non-real-time flows to provide better
QoS to end applications. A large value results in a lower drop
rate than a higher value and vice versa.

bj(t) ≤ bmax,j ; ∀t ∈ T,∀j ∈ J (4)

(Tarr(t, j)− Ttr(t, j)) ∗ td + bj(t− 1) ≤ bmax,j ; ∀t ∈ T,∀j ∈ J
(5)

(c) Programming the derivatives of sojourn time. The
first, second, and third-order derivatives of sojourn time are
calculated by computing the rate of change of sj(t), s′j(t)
and s′′j (t), respectively, as shown in Eq. 6-8. The sampling
interval is related to the packet arrival at the queue.

s′j(t) =
sj(t)− sj(t− 1)

∆t
; ∀t ∈ T,∀j ∈ J (6)

s′′j (t) =
s′j(t)− s′j(t− 1)

∆t
; ∀t ∈ T,∀j ∈ J (7)

s′′′j (t) =
s′′j (t)− s′′j (t− 1)

∆t
; ∀t ∈ T,∀j ∈ J (8)

The threshold of s′j(t) is programmed by ensuring that the
queue can handle packets at the current rate for tmax,j time,
as shown in Eq. 9 and Eq. 10. According to Eq. 9, the first-
order derivative of sojourn time s′j(t) must be less than the
upper delay bounds of the latency Ls,j . The concerning delay
bound Ls,j for the latency limits is expressed in Eq. 10, where
sin,j and tin,j are the captured sojourn times and time indexes
for the first packet present in the buffer, and lmax,j and tmax,j

are the projected upper limits. This programmability constraint
ensures that the dAQM can capture a sudden increase in delay
and drop packets timely without any buffer overflow.

s′j(t) ≤ Ls,j ; ∀t ∈ T,∀j ∈ J (9)

Ls,j =
lmax,j − sin,j

tmax,j − tin,j
; ∀j ∈ J (10)

Saad Saleh, Sunny Shu and Boris Koldehofe. dAQM: Derivative-based Active Queue Management. In Proceedings of the 23rd IFIP
Networking Conference, IFIP, 9 pages, 2024.

D
ro

p
p

in
g

 P
h

as
e

D
e

te
ct

io
n

 P
h

a
se

Fig. 2: The system architecture for the execution of dAQM.

Similar to s′j(t), the threshold of s′′j (t) is defined by
calculating the sharp influx of traffic. A small threshold of
s′′j (t) drops packets more frequently than a large threshold
and reshapes the traffic with equal arrival rates. The s′′′j (t) is
the most sensitive parameter as it can measure any change in
s′′j (t) which is not possible in other metrics. Analytically, it
implies that the integrals of second and third-order derivatives
(s′′j (t), s

′′′
j (t)) must be within the upper delay bounds (Ls,j), as

shown in Eq. 11 and Eq. 12, respectively. These constraints
ensure that the packets can be processed with the required
latency limits of the flow.∫

s′′j (t)dt ≤ Ls,j ; ∀j ∈ J (11)

∫ ∫
s′′′j (t)dtdt ≤ Ls,j ; ∀j ∈ J (12)

(d) Programming the derivatives of buffer size. Similar to
the sojourn time limits, the higher-order derivatives of buffer
size are calculated by measuring the rate of change of bj(t),
b′j(t) and b′′j (t) at fixed sampling intervals tb, respectively, as
shown in Eq. 13-15.

b′j(t) =
bj(t)− bj(t− 1)

∆tb
; ∀t ∈ T,∀j ∈ J (13)

b′′j (t) =
b′j(t)− b′j(t− 1)

∆tb
; ∀t ∈ T,∀j ∈ J (14)

b′′′j (t) =
b′′j (t)− b′′j (t− 1)

∆tb
; ∀t ∈ T,∀j ∈ J (15)

The rate of change of queue size (b′j(t), b
′′
j (t), b

′′′
j (t)) must

be less than the capacity limit of the buffer (Lb,j), as shown in
Eq. 16-18. It ensures that the packets are dropped when dAQM
cannot handle them in the required time. The capacity limit of
the buffer Lb,j is a function of maximum buffer size (bmax,j)
in comparison to the statistics of the first packet (bin,j , tin,j),
as shown in Eq. 19. These properties cater to the sharp influx
of network traffic and make sure that the traffic burst does not
occupy buffer beyond the handling limit.

b′j(t) ≤ Lb,j ; ∀t ∈ T,∀j ∈ J (16)

∫
b′′j (t)dt ≤ Lb,j ; ∀j ∈ J (17)

∫ ∫
b′′′j (t)dtdt ≤ Lb,j ; ∀j ∈ J (18)

Lb,j =
bmax,j − bin,j

tmax,j − tin,j
; ∀j ∈ J (19)

V. MODELING AND EVALUATION SETUP

In this section, we present the system architecture and the
evaluation setup for the proposed dAQM technique.

System Architecture. The system model for a queue man-
agement architecture containing the dAQM is shown in Fig. 2.
The incoming packets are split into separate queues based on
the traffic classes. The packets entering the queues are times-
tamped to record the sojourn time inside the queues. On the
dequeue, the buffer size is measured after regular intervals. The
sojourn time and buffer size are fed to the feature extraction
module which calculates the higher-order derivatives. Later,
dAQM applies a series of if -else conditions on the sojourn
time, buffer size, and the higher-order derivatives. Based upon
the matches, dAQM calculates the PDP and drops the packets.

Evaluation Setup. We developed the simulation model
of dAQM in ns-3 [26]. The setup consists of 100 clients
communicating with 5 servers through a common switch. The
switch uses a fair-queuing mechanism where flows of different
categories are split into separate queues. The simulation pa-
rameters are consistent with the prior researches [27], [28] and
are shown in Tab. II. The evaluation of dAQM was performed
by simulating clients with five traffic distribution models
including constant bit rate (CBR) and variable bit rate (VBR)
traffic. The distribution functions for the Poisson process based
exponential distribution, Pareto and Weibull distributions are
shown in Eq. 20, Eq. 21, and Eq. 22, respectively. The models

TABLE II: Simulation parameters of the network.

Parameter Value Parameter Value
Clients/Servers 100/5 Pkt Size (S/F/H) 1400 B

Link Bandwidth 2 Gbps Pkt Size (VoIP) 300 B
Trans. Rate (pc.) 10/5/1.5/.128/.08 Mbps Pkt Size (Gam.) 200 B

Link Latency 1 ms CBR ON/OFF=1/0s
Buffer Size 2000 p VBR ON/OFF=1/1.5s

Poisson λ (pc.) 892/446/133/50 p/s Poisson Mean = 1/λ
Pareto k/α = 1.5/2.5 Weibull b/c = 1/1.5

Saad Saleh, Sunny Shu and Boris Koldehofe. dAQM: Derivative-based Active Queue Management. In Proceedings of the 23rd IFIP
Networking Conference, IFIP, 9 pages, 2024.

TABLE III: The programmed parameters of state-of-the-art AQM algorithms and the three configurations of proposed dAQM.

AQM Parameters AQM Parameters
PIE Thdeq = 20 Tupdate = 15 alpha = 0.125 beta = 1.25 CoDel Int = 100 ms Target = 5 ms

COBALT Pdrop = 0 Inc. = 0.08 Dec. = 0.04 BlueTh. = 400 FQ-CoDel Int = 100 ms Target = 5 ms Flows = 1024

RED Thmax = 1000 Thmin = 500 QW = 0.002 Target = 5 ms alpha = 0.01 beta = 0.9

dAQM1 s = 1000 ms s′ = 10 s′′ = 10 s′′′ = 10 b = 120 p b′ = 1 b′′ = 10 b′′′ = 10
Dr[2] = 0.05 Dr[4] = 0.05 Dr[6] = 0.05 Dr[8] = 0.05 Dr[1] = 0.05 Dr[3] = 0.05 Dr[5] = 0.05 Dr[7] = 0.05

Dd[2] = 400 ms Dd[4] = 400 ms Dd[6] = 400 ms Dd[8] = 400 ms Dd[1] = 400 ms Dd[3] = 400 ms Dd[5] = 400 ms Dd[7] = 400 ms
dAQM2 s = 600 ms s′ = 0.1 s′′ = 0.1 s′′′ = 0.1 b = 80 p b′ = 0.1 b′′ = 0.1 b′′′ = 0.1

Dr[2] = 0.5 Dr[4] = 0.5 Dr[6] = 0.5 Dr[8] = 0.5 Dr[1] = 0.5 Dr[3] = 0.5 Dr[5] = 0.5 Dr[7] = 0.5
Dd[2] = 400 ms Dd[4] = 400 ms Dd[6] = 400 ms Dd[8] = 400 ms Dd[1] = 400 ms Dd[3] = 400 ms Dd[5] = 400 ms Dd[7]= 400 ms

dAQM3 s = 100 ms s′ =0.01 s′′ = 0.01 s′′′ = 0.01 b = 20 p b′ = 0.01 b′′ = 0.01 b′′′ = 0.01
Dr[2] = 0.98 Dr[4] = 0.98 Dr[6] = 0.98 Dr[8] = 0.98 Dr[1] = 0.98 Dr[3] = 0.98 Dr[5] = 0.98 Dr[7] = 0.98

Dd[2] = 400 ms Dd[4] = 400 ms Dd[6] = 400 ms Dd[8] = 400 ms Dd[1] = 400 ms Dd[3] = 400 ms Dd[5] = 400 ms Dd[7] = 400 ms

used the traffic flows of Streaming, Gaming, VoIP, HTTP, and
FTP. UDP protocol was used for Gaming and VoIP, while
TCP protocol was used for Streaming (Video on demand),
FTP, and HTTP applications. Since the output is a function
of the distribution function and input parameters, the average
(normalized) metrics have been shown in the results.

Building on Eq. 1-19, dAQM was programmed in three
configurations (dAQM1, dAQM2, dAQM3) with maximum
throughput, but different threshold limits. dAQM3 had the
lowest thresholds for higher-order derivatives in order to drop
packets with minor changes in higher-order derivatives. On the
contrary, dAQM1 had the highest threshold limits for higher-
order derivatives. The major parameters of dAQM and the
prior algorithms are shown in Tab. III.

f(t;λ) = λe−λt, t ≥ 0 (20)

f(t; k;α) =

{
αkα

tα+1 t ≥ k > 0,

0 t < k
(21)

f(t; b; c) =

{
c
b (

t
b)

c−1e−(t
b)

c

, t ≥ 0

0, t < 0
(22)

VI. PERFORMANCE ANALYSIS

In this section, we analyze the performance of dAQM
by varying the traffic load, packet size, drop rate, traffic
distribution models, flow types, and configurable parameters.

Performance with increased traffic load. The performance
of dAQM was analyzed by increasing the traffic load for the
HTTP traffic. The results, presented in Fig. 3, show that the
increase in load (incoming traffic per unit time) increases the
delay until the queues reach their maximum capacity. The
increase in load also increases the queue length and sojourn
time due to an increase in incoming packets. The results show
that the dAQM1 provides the lowest delay and queue length
for heavy traffic loads which are at least 28% and 62% less
than the traditional AQM algorithms, respectively, except for
COBALT which has high PLR and sojourn time. There is no
compromise on throughput due to the fair bandwidth sharing
of TCP flows. dAQM1 and dAQM3 also provide at least 49%

Fig. 3: dAQM performance with increasing traffic load.

improvement in the sojourn time for heavy traffic loads as
compared to the traditional protocols. By observing the rate
of change of congestion and available queue capacity, dAQM1

provides the lowest PLR which also results in lower end-to-
end delay. It increases the flow handling capacity and improves
the QoS for end users.

Performance with decreased packet sizes. The perfor-
mance of dAQM was analyzed by decreasing the packet
size from 1400 B (100%) to 50 B, as shown in Fig. 4. By
decreasing the packet size, clients send more packets for the
same data rate. As a result, the throughput decreases due to an
increase in packet handling by the packet processors. More-
over, the sojourn time and queue length also increases which

Saad Saleh, Sunny Shu and Boris Koldehofe. dAQM: Derivative-based Active Queue Management. In Proceedings of the 23rd IFIP
Networking Conference, IFIP, 9 pages, 2024.

Fig. 4: dAQM performance with decreasing packet sizes.

increases the PLR and delay. By increasing the packet size
beyond the optimum value (100%), the throughput decreases
due to an increase in network congestion. In comparison to
the traditional protocols, dAQM showed an improvement in
delay and queue length by at least 2.7% and 57%, respectively,
except for COBALT which showed poor PLR.

Performance with increased drop rate. The drop rate of
the dAQM was increased from minimum to maximum (1%-
99%) to understand the network performance, as shown in
Fig. 5. The analysis shows that the increase in drop rate
increases the PLR, and decreases the sojourn time and queue
length in the queues. However, the drop rate only impacts the
packets matching the programmed ranges for dAQM features.
The traditional AQM algorithms have been simulated with
the fixed optimal parameters. The comparison with prior
approaches shows that dAQM provides up to 7.7% and 37.01%
improvement in delay and queue length, respectively, without
any compromise on the throughput.

Variation in traffic distribution models. Considering the
requirement of various applications, the performance of dAQM
was analyzed over various traffic distribution models and AQM
algorithms. The results, presented in Fig. 6, show that dAQM1

provides the lowest PLR for various models. The comparison
with prior approaches shows that RED also provides very
low PLR, but it compromises on the queue length especially
over Poisson distributed flows. Since HTTP is using TCP with
short flows, throughput is fairly shared among multiple flows
and all AQM techniques have been optimized for maximum

Fig. 5: Performance with increasing dAQM drop rate.

throughput. However, the traditional techniques provide up to
60% higher PLR than the dAQM. PIE and RED provide the
worst sojourn time, especially over Poisson and CBR flows.
The comparison shows that no algorithm fits the needs of
all traffic models, but dAQM provides programmability and
configurations for catering multiple network flows.

Variation in traffic flows. Considering the different QoS
requirements of various applications, Fig. 7 presents the per-
formance of dAQM with prior AQM algorithms for Gaming,
VoIP, HTTP, Streaming, and FTP applications under optimal
conditions. The analysis shows that dAQM1 provides the low-
est PLR which is close to RED and FQ-CoDel. However, RED
provides the highest sojourn time which also impacts the end-
to-end delay. FQ-Codel provides high throughput, but its FCT
is much higher than the dAQM1. Moreover, dAQM provides
the configurability of various parameters which can provide
a very low sojourn time. Among the other approaches, RED
and FQ-CoDel provide high queue length, while PIE, CoDel
and COBALT provide high PLR. In comparison to the prior
AQM algorithms, dAQM can provide multiple configurations
based on the performance requirements of various flows.

Statistical analysis of long vs short flows. The statistical
analysis of FTP-based long flows vs HTTP-based short flows
for dAQM is presented in Tab. IV. The results show that
traditional AQM algorithms like RED and FQ-CoDel have
an FCT of 30.2 s and 25.4 s, respectively. However, dAQM
requires an FCT from 15.3 to 15.8 s depending upon the
configuration. It shows that dAQM provides an improvement

Saad Saleh, Sunny Shu and Boris Koldehofe. dAQM: Derivative-based Active Queue Management. In Proceedings of the 23rd IFIP
Networking Conference, IFIP, 9 pages, 2024.

Fig. 6: Performance of HTTP traffic over CBR (C), VBR (V),
Poisson (Po), Pareto (Pa) and Weibull (W) traffic distribution
models for (1) RED, (2) PIE, (3) CoDel, (4) FQ-CoDel, (5)
COBALT, (6) dAQM1, (7) dAQM2, (8) dAQM3.

in FCT by at least 39.7%. For HTTP-based short flows,
dAQM improves the queue length and PLR as compared to
the traditional protocols. The results show that dAQM has a
major impact on FCT for FTP-based long flows.

Variation in individual configurable parameters. All
eight dAQM features were varied individually to understand
the priority of various features. Fig. 8 shows the 11 histograms
referring to 8 dAQM features and the 3 dAQM configurations.
Since all configurations have been optimized to maximize
the throughput, the results show that the sojourn time is the
most effective parameter for reducing the PLR. However, the
combination of sojourn time with the higher-order derivatives
can minimize the packet delay (sojourn time) in the queues.
The combination of all 8 features can provide the lowest PLR
or sojourn time based on the traffic flow requirements.

VII. DISCUSSION

In this section, we discuss the feasibility, salient features,
and deployment scenarios for the dAQM algorithm.

No One-Size-Fits-All AQM algorithm. The notion of an
optimal algorithm that fits the needs of all traffic classes
and traffic distribution models is not feasible. The traditional
algorithms, like RED, CoDel, define some optimal parameters
for queue management. However, our study shows that an
algorithm suitable for one traffic class performs worse for
another traffic class. It necessitates the use of derivative-based
dAQM algorithm which can tailor itself to the dynamics of
the network for providing maximum QoS to end users.

Computational complexity and feasibility. dAQM can be
implemented using Network Function Virtualization (NFV)

Fig. 7: Performance of Gaming (G), VoIP (V), HTTP (H),
Streaming (S), and FTP (F) over Poisson distributed flows.
AQM algorithms include (1) RED, (2) PIE, (3) CoDel, (4) FQ-
CoDel, (5) COBALT, (6) dAQM1, (7) dAQM2, (8) dAQM3.

TABLE IV: Performance of CBR-based flows for dAQM.

AQM FTP Flows
Delay (ms) TP. (kbps) QL (pkts) PLR % FCT (s)

RED 2403.5 263.6 677.5 0.4 30.2
PIE 1908.4 225.9 94.5 0.6 29.2

CoDel 1349.2 221.2 103.8 0.5 27.8
FQ-CoDel 1955 206.7 303.7 0.6 25.4
COBALT 668.2 302.3 67.2 0.6 25.7
dAQM1 1082.5 292.7 122.9 0.3 15.4
dAQM2 1138.1 278.2 144.5 0.5 15.3
dAQM3 1341 291.5 124.5 0.5 15.8

AQM HTTP Flows
Delay (ms) TP. (kbps) QL (pkts) PLR % FCT (s)

RED 209.2 437.4 112.7 < 0.01 2.81
PIE 239.0 459.5 14.4 0.15 2.84

CoDel 190.7 450.9 26.2 0.08 2.81
FQ-CoDel 183.4 461.3 26.3 0.08 2.85
COBALT 165.2 444.4 19.1 0.12 2.84
dAQM1 182.2 455.7 9.0 0.05 2.83
dAQM2 152.9 454.4 10.9 0.09 2.84
dAQM3 176.7 450.6 9.7 0.11 2.83

which supports more expressive network functions in packet
processors. The line-rate switches can support dAQM by
incorporating the derivative estimation in the match-action
tables. Moreover, the current line of research focuses on more
expressive match-action pipelines [29]–[32]. dAQM does not
bring any additional computational overhead for the emerg-
ing match-action pipelines because advanced traffic features,
like higher-order derivatives, are already supported by them
through specialized components like Op-amps [33], [34].

Splitting of traffic flows. Since dAQM deals with different
traffic flows separately, the incoming traffic can be split into
various queues based on their traffic classes. These classes are

Saad Saleh, Sunny Shu and Boris Koldehofe. dAQM: Derivative-based Active Queue Management. In Proceedings of the 23rd IFIP
Networking Conference, IFIP, 9 pages, 2024.

P
LR

 (
%

)

Fig. 8: dAQM analysis by variation in individual parameters of sojourn time (s), buffer size (b) and their higher order derivatives.
The normalized histograms are (1) s, (2) s′, (3) s′′, (4) s′′′, (5) b, (6) b′, (7) b′′, (8) b′′′, (9) dAQM1, (10) dAQM2, (11) dAQM3.

identified using various techniques like protocols and ports-
based separation e.g., SIP, RTP for VoIP etc.

Dynamic adaptation in various environments. Instead of
the static configuration, dAQM can also dynamically adapt
among various configurations. It requires a controller that
can monitor the network traffic flows in various queues and
adapt between the various configurations. The controller can
generate many other configurations based on the requirements.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel dAQM algorithm that
uses the higher-order derivatives of sojourn time and buffer
size for the estimation of drop probability. The analysis
showed that dAQM provided an improvement in queue length
by 62% and 57% for an increase in traffic load and decrease
in packet size, respectively, as compared to the prior AQM
algorithms. dAQM provides the lowest PLR with an increase
in traffic load. It also effectively caters to the requirements of
various traffic classes and models including Poisson, Pareto,
etc. dAQM improves the FCT for FTP-based long flows by up
to 39.7% as compared to the prior algorithms. In the future,
we will study the use of deep learning techniques for the
configuration and optimization of dAQM features.

The authors made artifacts publicly accessible at [6].

ACKNOWLEDGMENT

This research is supported by the CogniGron research center
and the Ubbo Emmius Funds (University of Groningen).

REFERENCES

[1] C. Kulatunga, N. Kuhn, G. Fairhurst, and D. Ros, “Tackling Bufferbloat
in Capacity-limited Networks,” in Proc. European Conf. Networks and
Communications. IEEE, 2015, pp. 381–385.

[2] S. Floyd and V. Jacobson, “Random Early Detection Gateways for
Congestion Avoidance,” IEEE/ACM Transactions on Networking, 1993.

[3] K. Nichols, V. Jacobson, A. McGregor, and J. Iyengar, “Controlled Delay
Active Queue Management,” RFC 8289, Jan. 2018.

[4] S. Saleh, S. Shu, and B. Koldehofe, “Adaptive In-Network Queue
Management using Derivatives of Sojourn Time and Buffer Size,” in
Proc. Network Operations and Management Symp. IEEE, 2024.

[5] S. Das and R. Sankar, “Broadcom Smart-Buffer Technology in Data
Center Switches for Cost-Effective Performance Scaling of Cloud Ap-
plications,” Broadcom White Paper, 2012.

[6] dAQM Artifacts. [Online]. Available: https://github.com/rug-ds-lab/
2024 Saleh dAQM-Artifacts

[7] B. Suter, T. Lakshman, D. Stiliadis, and A. K. Choudhury, “Design
Considerations for Supporting TCP with Per-Flow Queueing,” in Proc.
Int. Conf. Computer Communications, vol. 1. IEEE, 1998, pp. 299–306.

[8] T. Høiland-Jørgensen, P. McKenney, D. Taht, J. Gettys, and E. Dumazet,
“The Flow Queue CoDel Packet Scheduler and Active Queue Manage-
ment Algorithm,” RFC 8290, Jan. 2018.

[9] R. Pan, P. Natarajan, F. Baker, and G. White, “Proportional Integral
Controller Enhanced (PIE): A Lightweight Control Scheme to Address
the Bufferbloat Problem,” RFC 8033, Feb. 2017.

[10] R. P. Tahiliani and H. Tewari, “Implementation of PI2 Queuing Disci-
pline for Classic TCP Traffic in ns-3,” in IFIP Networking Conf., 2017.

[11] J. Palmei et al., “Design and Evaluation of COBALT Queue Discipline,”
in Int. Symp. Local and Metropolitan Area Networks. IEEE, 2019.

[12] T. Høiland-Jørgensen, D. Täht, and J. Morton, “Piece of CAKE: A
Comprehensive Queue Management Solution for Home Gateways,” in
Int. Symp. Local and Metropolitan Area Networks. IEEE, 2018.

[13] R. Hotchi, H. Chibana, T. Iwai, and R. Kubo, “Active Queue Man-
agement Supporting TCP Flows using Disturbance Observer and Smith
Predictor,” IEEE Access, vol. 8, pp. 173 401–173 413, 2020.

[14] A. Adamu, V. Shorgin, S. Melnikov, and Y. Gaidamaka, “Flexible
Random Early Detection Algorithm for Queue Management in Routers,”
in Int. Conf. Distributed Computer & Communication Networks, 2020.

[15] V. Addanki, M. Apostolaki, M. Ghobadi, S. Schmid, and L. Vanbever,
“ABM: Active Buffer Management in Datacenters,” in Proc. SIGCOMM
Conf. ACM, 2022, pp. 36–52.

[16] G. White and D. Rice, “Active Queue Management in DOCSIS 3.x
Cable Modems,” Technical report, CableLabs, 2014.

[17] G. Park, B. Jeon, and G. M. Lee, “QoS Implementation with Triple-
Metric-Based Active Queue Management for Military Networks,” Elec-
tronics, vol. 12, no. 1, p. 23, 2022.

[18] M. Yanev and P. Harvey, “Herding the FLOQ: Flow Optimised Queue-
ing,” in IFIP Networking Conference. IEEE, 2022, pp. 1–9.

[19] D. M. Havey and K. C. Almeroth, “Active Sense Queue Management
(ASQM),” in IFIP Networking Conference. IEEE, 2015, pp. 1–9.

[20] M. Kim, M. Jaseemuddin, and A. Anpalagan, “Deep Reinforcement
Learning based Active Queue Management for IoT Networks,” Journal
of Network and Systems Management, vol. 29, no. 3, p. 34, 2021.

[21] R. Bless, M. Hock, and M. Zitterbart, “Policy-oriented AQM Steering,”
in IFIP Networking Conference. IEEE, 2018, pp. 1–9.

[22] X. Chen et al., “Fine-Grained Queue Measurement in the Data Plane,”
in ACM Int. Conf. Emerging Networking Experiments & Tech., 2019.

[23] T. Braud, M. Heusse, and A. Duda, “The Virtue of Gentleness: Im-
proving Connection Response Times with SYN Priority Active Queue
Management,” in IFIP Networking Conference. IEEE, 2018.

[24] D. A. Alwahab, G. Gombos, and S. Laki, “On a Deep Q-Network-based
Approach for Active Queue Management,” in Proc. Joint European
Conf. Networks and Communications & 6G Summit. IEEE, 2021.

[25] Q. Xu, G. Ma, K. Ding, and B. Xu, “An Adaptive Active Queue
Management based on Model Predictive Control,” IEEE Access, 2020.

[26] Ns3 network simulator. [Online]. Available: https://www.nsnam.org/
[27] M. Hock, R. Bless, and M. Zitterbart, “Experimental Evaluation of BBR

Congestion Control,” in Int. Conf. on Network Protocols. IEEE, 2017.
[28] X. Du et al., “R-AQM: Reverse ACK Active Queue Management in

Multitenant Data Centers,” IEEE Transactions on Networking, 2023.
[29] S. Saleh and B. Koldehofe, “The Future is Analog: Energy-Efficient

Cognitive Network Functions over Memristor-Based Analog Computa-
tions,” in Proc. Workshop on Hot Topics in Networks. ACM, 2023.

[30] S. Saleh and B. Koldehofe, “On Memristors for Enabling Energy
Efficient and Enhanced Cognitive Network Functions,” IEEE Access,
vol. 10, pp. 129 279–129 312, 2022.

[31] S. Saleh, A. S. Goossens, T. Banerjee, and B. Koldehofe,
“TCAmMCogniGron: Energy Efficient Memristor-Based TCAM for
Match-Action Processing,” in Int. Conf. on Rebooting Computing, 2022.

[32] S. Saleh, A. S. Goossens, T. Banerjee, and B. Koldehofe, “Towards
Energy Efficient Memristor-based TCAM for Match-Action Processing,”
in Proc. Int. Green and Sustainable Computing Conf. IEEE, 2022.

[33] S. Saleh, A. S. Goossens, S. Shu, T. Banerjee, and B. Koldehofe, “Ana-
log In-Network Computing through Memristor-based Match-Compute
Processing,” in Int. Conf. on Computer Communications. IEEE, 2024.

[34] S. Saleh and B. Koldehofe, “Memristor-based Network Switching Archi-
tecture for Energy Efficient Cognitive Computational Models,” in Proc.
Int. Symp. on Nanoscale Architectures. ACM, 2023, p. 4 pages.

https://github.com/rug-ds-lab/2024_Saleh_dAQM-Artifacts
https://github.com/rug-ds-lab/2024_Saleh_dAQM-Artifacts
https://www.nsnam.org/

	Introduction
	Literature Review
	Problem Statement
	Proposed dAQM Algorithm
	Traffic features for dAQM
	dAQM Algorithm
	Programmability of dAQM

	Modeling and Evaluation Setup
	Performance Analysis
	Discussion
	Conclusion and Future Work
	References

