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Abstract — In this paper we consider two-way relaying with a
MIMO amplify and forward (AF) relay. In the literature, the re-
lay ampli cation matrix which maximizes the sum rate in two-
way relaying is not known for the general MIMO case. How-
ever, the maximization of the channels’ Frobenius norms is eas-
ily achieved via the Algebraic Norm-Maximizing (ANOMAX)
transmit strategy. While this scheme provides a signi cant im-
provement in the received signals’ strengths, it does not reach
the full multiplexing gain for high SNRs due to its low rank na-
ture. Therefore, we propose a simple strategy to restore the rank
while preserving the same subspaces via an optimization over
the pro le of the singular values. The resulting scheme is called
rank-restored ANOMAX (RR-ANOMAX).

The main bene t of this approach is that the computational
complexity is very low. Moreover, its performance is very close
to the one-way upper-bound which is obtained by considering
the two transmission directions as independent one-way relaying
channels.

Index Terms— Two-Way Relaying, Amplify and Forward,
Beamforming

1. INTRODUCTION
Relaying is considered as a candidate technology for future mo-
bile communication systems. In particular, two-way relaying [3] is
known as a technique which uses the radio resources in a particularly
ef cient manner. In this scheme, two subsequent time slots are used
to establish a bidirectional transmission between two terminals: In
the rst slot, both terminals transmit to the relay, in the second slot
the relay transmits back to both terminals. This compensates the
spectral ef ciency loss in one-way relaying due to the half duplex
constraint of the relay [4, 2]. We consider amplify and forward (AF)
relays which retransmit an ampli ed version of their received signal
since these cause less transmission delay and require lower hardware
complexity than decode and forward (DF) relays.

It is desirable to nd the relay transmit strategy which maxi-
mizes the (weighted) sum rate of both users. In [10], the capacity
region and an iterative scheme to compute the optimal relay ampli-
cation matrix are discussed for the special case that the terminals
have a single receive antenna. For the same case, we have introduced
a signi cantly simpler scheme to achieve the maximum sum rate
called GERMS (Generalized Eigenvector Based Rate-Maximizing
Transmit Strategy for Single-Antenna Terminals) in [6].

However, in this paper we consider the general MIMO case,
where each terminal may have more than one antenna. The exist-
ing rate-optimal approaches for single-antenna terminals from [10]
and [6] cannot be extended to multiple antennas.

For this case, [9] proposes the dual channel matching (DCM)
scheme as a suboptimal approach to reduce the complexity of the
optimization problem. Moreover, in [8], ZF and MMSE transceivers

are introduced for the case where the number of antennas at the relay
is greater or equal to the sum of the number of antennas at the user
terminals. However, these schemes suffer from a loss in energy of
the desired signal since the interference is forced to zero at the relay.

The algebraic norm-maximizing (ANOMAX) transmit strategy
has been introduced in [5]. ANOMAX maximizes the weighted sum
of the Frobenius norms of the effective channels without requiring
any iterative procedures. While ANOMAX results in a signi cant
improvement in the received signals’ strengths, it does not achieve
the full multiplexing gain for high SNRs due to the low-rank nature
of the solution.

Therefore, in this paper, we propose to restore the rank of the re-
lay ampli cation matrix by optimizing the sum rate over the pro le
of the singular values while keeping the left and the right singular
vectors xed. The resulting strategy called RR-ANOMAX (rank-
restored ANOMAX) combines the good performance of ANOMAX
for low SNRswith the rank requirement for high SNRs. We rst pro-
pose an exhaustive search over the singular values which requires an
MR − 1 dimensional numerical optimization, where MR denotes
the number of antennas at the relay station. As an alternative with
a lower computational complexity, we introduce a closed-form ap-
proximation to the optimal pro le of singular values called WF-RR-
ANOMAX, since it is inspired by the water lling (WF) algorithm1.

We show via simulations that WF-RR-ANOMAX achieves
nearly the same sum rate as the exhaustive search needed for RR-
ANOMAX. Since the achievable rate region in two-way relaying is
not known for the general MIMO case, we compare the different
approaches to a “one-way upper bound” which is obtained by con-
sidering the two transmission directions as separate one-way links.
As we show in Section 5, RR-ANOMAX and WF-RR-ANOMAX
yield a sum rate very close to this upper bound even though this
bound is not achievable in general.

2. SYSTEMDESCRIPTION
The two-way relaying system we investigate in this paper is shown in
Figure 1. An intermediate relay station RS assists the bidirectional
transmission between two user terminals UT1 and UT2. The relay is
equipped with MR antennas, the terminals UT1 and UT2 have M1

andM2 antennas, respectively.
The data transmission is performed in two subsequent time slots.

In the rst time slot, both terminals transmit to the relay, where their
transmissions interfere. The signal received at the relay can be writ-
ten as

r = H1 · x1 + H2 · x2 + nR,

1Even though WF is computed iteratively, the number of iterations is not
data-dependent but only a function of the number of antennas and hence
strictly bounded. Thus, in contrast to schemes which iterate until a threshold-
based stopping criterion is ful lled, it can be called closed-form.
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Fig. 1. Two-way relaying system model.

where H1 ∈ C
MR×M1 and H2 ∈ C

MR×M2 represent the at
fading MIMO channels between the terminals and the relay, x1 ∈
C

M1×1 and x2 ∈ C
M2×1 are the transmitted signals from the ter-

minals, and the vector nR contains the noise component at the relay.
In the second time slot, the relay ampli es r and transmits the

resulting signal r̄ to the terminals. We can express r̄ via
r̄ = γ · G · r, (1)

where G ∈ C
MR×MR is the relay ampli cation matrix. Note that

G is normalized such that ‖G‖F = 1, where γ ∈ R
+ represents

a scalar ampli cation factor that guarantees that the relay transmit
power constraint of PT,R is satis ed.

The terminals receive the ampli ed signal r̄ from the relay via
their reverse channels. We assume that reciprocity holds and there-
fore write the received signals y1 ∈ C

M1×1 and y2 ∈ C
M2×1 as

y1 = γ ·H (e)
1,1 · x1 + γ ·H (e)

1,2 · x2 + ñ1 (2)

y2 = γ ·H (e)
2,2 · x2 + γ ·H (e)

2,1 · x1 + ñ2, (3)

where ñi = γ ·HT
1 · G · nR + n1 represents the effective noise

at terminal i which consists of the i-th terminal’s own noise and
the forwarded relay noise. Moreover, we have de ned the effective
channels

H
(e)
i,j = H

T
i ·G ·Hj , i, j = 1, 2. (4)

As it is evident from (2) and (3) the terminals receive the desired
signals from the other terminals via the effective channels H

(e)
1,2

and H
(e)
2,1 and their self-interference via H

(e)
1,1 and H

(e)
2,2 , respec-

tively. Since each terminal knows its own transmitted signal, the
self-interference can be subtracted if channel knowledge is avail-
able. This step is often referred to as Analogue Network Coding
(ANC) [1]. In this paper, we assume that the channel knowledge is
perfect and only consider the desired signal as well as the effective
noise terms.

3. RANK-RESTORED ANOMAX
In [5] the relay ampli cation matrix was chosen to maximize the
(weighted) sum of the Frobenius norms of the effective channels via
the ANOMAX scheme. ANOMAX provides a solution for

GANOMAX = arg max
G,‖G‖F=1

����H
(e)
1,2

���2

F
+
���H

(e)
2,1

���2

F

�
(5)

and is obtained from vec {GANOMAX} = u∗
1, where the ∗ repre-

sents complex conjugation. Here, u1 is the dominant left singular
vector of the matrixK given by

K = [H2 ⊗H1, H1 ⊗H2] ∈ C
M2

R
×2 M1 M2 , (6)

where ⊗ represents the Kronecker product. Note that for simplicity
we have ignored the weighting coef cient β which is equivalent to
setting β = 0.5. It was observed in [5] that ANOMAX signi cantly
improves the received signals’ strengths for a single-stream trans-
mission. However, it tends to concentrate most of the energy on the

dominant singular value. In particular, the resulting G is a rank-2
matrix where the second singular value is signi cantly smaller than
the dominant one. This is detrimental for the sum rate since for high
SNRs, the full spatial multiplexing gain can only be achieved if all
spatial modes become active. This requires that the ranks of H

(e)
1,2

andH
(e)
2,1 are at leastmin {M1, M2, MR}.

To achieve the full spatial multiplexing gain, the rank of G has
to be increased. This can be achieved by properly adjusting the sin-
gular values of G. We propose to leave the singular vectors of G

intact and to adjust only theMR singular values. As we show in the
sequel, this requires anMR − 1 dimensional optimization, sinceG

is normalized. To this end, let the SVD ofGANOMAX be given by

GANOMAX = UA ·ΣA · V H
A . (7)

Then the singular value pro le can be adjusted via the vector σ =
[σ1, σ2, . . . , σMR

]T by de ning

G(σ) = UA · diag {σ} · V H
A , (8)

where diag {σ} is a diagonal matrix containing the elements of the
vector σ on its main diagonal. Our new optimization problem there-
fore takes the following form

max
σ

r(G(σ)), s.t. ‖σ‖2 = 1 and σ1 ≥ σ2 ≥ . . . ≥ 0 (9)

where r(G(σ)) denotes the sum rate achievable with the relay am-
pli cation matrix G(σ), i.e., the sum of the capacities of HT

1 ·
G(σ) ·H2 and HT

2 · G(σ) · H1. The constraints stem from the
fact thatG(σ) is normalized and the singular values are ordered and
non-negative.

Note that in the special case σi = 1/
√

MR, ∀i, the matrix√
MR · G(σ) becomes unitary. As shown in [11] this represents

the best approximation of
√

MR ·GANOMAX by a unitary matrix in
the Frobenius norm sense, commonly referred to as the Procrustes
approximation.

The optimization problem in (9) can be simpli ed by taking into
account the nature of our parameters. First of all, the norm constraint
on σ can be used to reduce the search space toMR − 1 dimensions
by optimizing over σ̄ = [σ2/σ1, . . . , σMR

/σ1]
T ∈ R

MR−1, where
each element of σ̄ is in [0, 1]. Secondly, the search space for σ̄ can
be further reduced by taking into account that the singular values
are ordered, i.e., the i-th element of σ̄ is optimized in the interval
between 0 and the current value of the (i− 1)-th element of σ̄.

4. WF-BASED HEURISTIC
RR-ANOMAX requires the optimization over MR − 1 real-valued
parameters, which can become cumbersome for larger values ofMR.
A typical result of RR-ANOMAX is depicted in Figure 2, where we
consider uncorrelated Rayleigh fading channels with M1 = M2 =
6, MR = 3 and depict the resulting pro le of the squared singular
values obtained via RR-ANOMAX.We observe that for low SNRs, a
low-rank solution is obtained and for high SNRs, all singular values
become equal. We have found a similar trend in all other scenarios
that have been investigated.

It is therefore possible to replace the optimization procedure
by a closed-form water- lling (WF) based heuristic. The resulting
singular values do not perfectly match the ones obtained via RR-
ANOMAX. However, since the cost function is not very sensitive to
small changes in the singular values, the sum rate achieved via this
heuristic is always very close to RR-ANOMAX, which we demon-
strate numerically in Section 5.

Our WF-based closed-form solution chooses σk according to

σ
2

k =

�
μ −

PN,R

λk

�
+

, k = 1, 2, . . . , r, (10)
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Fig. 2. Pro le of squared singular values optimized via RR-
ANOMAX and WF-RR-ANOMAX forM1 = M2 = 6,MR = 3.
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Fig. 3. Sum rate vs. SNR forM1 = M2 = MR = 3, ρR = 0.9, and
ρ1 = ρ2 = 0.

where PN,R represents the noise power at the relay, (x)+ =
max {0, x}, and μ is the water level such that ‖σ‖2 = 1. Here, λk

represents the virtual eigenvalue pro le which we can compute via

λk = (σ1,k + δ) · (σ2,k + δ), k = 1, 2, . . . , r, (11)

where δ is a positive constant to assure that we obtain r non-zero
eigenvalues for high SNRs (δ = 1 is used in the simulations).
The rank r is chosen as r = min {MR, min {M1, M2}+ 1}.
Comparing the pro le of the singular values obtained via WF-RR-
ANOMAX and RR-ANOMAX in Figure 2 we observe that they
follow a similar trend. Note that WF-RR-ANOMAX is just one
example for a possible heuristic.

5. SIMULATION RESULTS

In this section we present the results of numerical computer simu-
lations to demonstrate the achievable rate with the RR-ANOMAX
approach developed in the previous sections.

We assume that both terminals and the relay have a transmit
power of 1 and experience zero mean circularly symmetric complex
Gaussian noise with variance PN. Consequently, the SNR is de ned
as P−1

N . Moreover, we consider Rayleigh fading channels with dif-
ferent antenna con gurations at the transmitter and the receiver. In
the case of correlated Rayleigh fading channels, we assume the Kro-
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Fig. 4. Sum rate vs. SNR for M1 = M2 = 2, MR = 4, and
ρ1 = ρ2 = ρR = 0.
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Fig. 5. Sum rate vs. SNR for M1 = M2 = MR = 4, and ρ1 =
ρ2 = ρR = 0.

necker correlation model which can be expressed as

E

�
Hi ·HH

i

�
= RR, i = 1, 2 (12)

E

�
H

H
i ·Hi

�
= Ri, i = 1, 2, (13)

where RR ∈ C
MR×MR and Ri ∈ C

Mi×Mi represent the spatial
correlation matrices at the relay and at the user terminal i, respec-
tively. For simplicity, the matrices RR and Ri are chosen such that
their main diagonal elements are equal to one and the magnitude of
all off-diagonal elements is equal to ρR and ρi, respectively.

We display the normalized sum rate in Bits/s/Hz which is the
sum of the capacities of the two effective channels HT

1 · G · H2

and HT
2 ·G ·H1 for various choices of G. Here, RR-ANOMAX

refers to the solution of (9) via an exhaustive search over σ̄ and WF-
RR-ANOMAX denotes the water lling based closed-form solution.
For the curve labeled “DFT” we do not need channel knowledge at
the relay and set G to a DFT matrix of sizeMR ×MR normalized
to unit Frobenius norm. Moreover, the original ANOMAX solution
from [5] and the dual channel matching (DCM) strategy from [9] are
shown for comparison. For the case whereMR ≥ M1 +M2 we also
depict the ZF and the MMSE schemes introduced in [8].

Since the achievable rate region in two-way relaying is not
known for the general MIMO case, we compare the different ap-
proaches to a “one-way upper bound”. This bound is obtained by
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Fig. 6. Sum rate vs. SNR for M1 = M2 = 6, MR = 3, and
ρ1 = ρ2 = ρR = 0.

rst considering only one of the transmission directions, computing
the rate-optimal relay ampli cation matrix for this link according
to [7], and then determining the capacity of this one-way link. Then,
the same procedure is repeated for the other transmission direction
and the resulting capacities are added. The corresponding curve is
labeled “One-way bound” in our simulation results. Note that this
bound is in general not achievable but we expect the result to be
close due to the nature of ANC [1].

Figure 3 displays the case where M1 = M2 = MR = 3.
Moreover, in this scenario we introduce spatial correlation at the
relay by setting ρR = 0.9 but no spatial correlation at the termi-
nals (ρ1 = ρ2 = 0). We observe that ANOMAX performs well
for low SNRs where only a single stream is used since in this case
the improvement in signal strength obtained via ANOMAX is vital.
However, for higher SNRs, due the low-rank nature of ANOMAX, it
fails to achieve the required multiplexing gain. Therefore, the simple
DFT solution outperforms ANOMAX at a certain SNR, even though
it does not take channel state information into account. Via RR-
ANOMAX, we can restore the required rank for high SNRs while
preserving the good performance of ANOMAX for low SNRs. Com-
paring the exhaustive search solution RR-ANOMAX with the sub-
optimal closed-form water lling approach WF-RR-ANOMAX, we
observe that the latter performs almost identically well even though
its complexity is much smaller. Moreover, both are very close to the
one-way upper bound and better than DCM.

A similar conclusion is drawn from Figure 4, where we set
M1 = M2 = 2, MR = 4, and consider uncorrelated Rayleigh fad-
ing. Here, the improvement in received signal strength obtained via
ANOMAX is even more pronounced since there are more degrees of
freedom in the relay ampli cation matrix to control less parameters
in the effective channel matrices. Still, for high SNRs, ANOMAX
suffers from its low-rank nature and is hence outperformed by the
DFT. The RR-ANOMAX scheme requires a 3-dimensional opti-
mization which can already become quite cumbersome. However,
comparing it to WF-RR-ANOMAX, we observe again that WF-
RR-ANOMAX performs almost identically well and both are close
to the one-way upper bound. Since in this scenario, the condition
MR ≥ M1 + M2 from [8] is ful lled, we can depict the ZF and
MMSE approaches as well. The comparison is a bit unfair since
ZF and MMSE suppress the self-interference at the relay so that
the terminals do not have to subtract it themselves (i.e., they do
not require channel knowledge). As it is evident from the sum rate
performance, this form of interference mitigation causes a signif-

icant rate loss which is due to the noise enhancement at the relay.
Therefore, the self-interference should always be canceled by the
terminals themselves.

Finally, Figures 5 and 6 depict the result of choosing M1 =
M2 = MR = 4 andM1 = M2 = 6,MR = 3, respectively. Again,
uncorrelated Rayleigh fading is assumed (ρR = ρ1 = ρ2 = 0). The
observations are similar to the previous results: RR-ANOMAX suc-
cessfully restores the rank of ANOMAX which is needed to provide
the full spatial multiplexing gain for high SNRs. Moreover, the sub-
optimal WF-RR-ANOMAX solution performs almost as good as the
exhaustive search needed for RR-ANOMAX, both are very close to
the one-way upper bound, and better than DCM.

6. CONCLUSIONS
In this paper we propose a low-complexity solution for the relay am-
pli cation matrix in a MIMO two-way relaying system with am-
plify and forward relays. We start from the ANOMAX solution that
maximizes the effective channels’ Frobenius norms and hence sig-
ni cantly improves the signal strength which is especially impor-
tant if the SNR is very low. However, due to the low-rank nature
of ANOMAX, it cannot provide the full spatial multiplexing gain
for high SNRs and is therefore outperformed by simple full-rank
solutions. Consequently, we propose to restore the rank via RR-
ANOMAX by choosing the relay ampli cation matrix such that the
singular vectors are the same as the ones used for ANOMAX, but
the singular values are changed to provide the maximum sum rate.
This requires an exhaustive search overMR − 1 parameters.

Finally, we reduce the complexity even further by proposing a
closed-form solution to nd the singular values which is inspired
by the water lling algorithm called WF-RR-ANOMAX. While this
approach provides suboptimal singular values, its sum rate perfor-
mance is very close to the exhaustive search solution in numerical
simulations. Moreover, both approaches are very close to the “one-
way bound” which is an upper bound on the sum rate obtained by
treating the two transmission directions as independent one-way re-
laying channels.
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