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Correspondence

Improving the Performance of Unitary
ESPRIT via Pseudo-Noise Resampling

Alex B. Gershman and Martin Haardt

Abstract—A new pseudo-noise resampling technique is proposed to
mitigate the effect of outliers in Unitary ESPRIT. Our algorithm improves
the performance of Unitary ESPRIT in unreliable situations, where the
so-called reliability test has a failure. For this purpose, we exploit a
pseudo-noise resampling of a failed Unitary ESPRIT estimator with a
censored selection of “successful” resamplings recovering the nonfailed
outputs of the reliability test.

Index Terms—Direction finding, pseudo-noise resampling, Unitary ES-
PRIT.

I. INTRODUCTION

Unitary ESPRIT is a low-complexity modification of conventional
ESPRIT [1] formulated in terms of real-valued computations [2]–[4].
The final step of Unitary ESPRIT involves a special test [2] showing
whether the obtained direction-of-arrival (DOA) estimate is reliable.
In case this test (in what follows referred to as thereliability test)
has a failure, the final step of the algorithm yields a complex
conjugate pair of eigenvalues instead of a real one, as in the
nonfailed case. The failed situation can be interpreted as anoutlier
corresponding to unresolved signal arrivals [2]. In the case of a
failed reliability test, it is recommended in [2]–[4] to restart the
algorithm with more reliable measurements or to use more snapshots
when estimating the covariance matrix. However, in many practical
situations, neither more reliable measurements nor additional data
snapshots are available.

In this correspondence, we propose another approach to mitigate
such a type of outlier. Our approach does not require any additional
data, i.e., it exploits exactly the same data snapshots as the failured
estimate itself. Instead of unavailable additional data, it utilizes
synthetically generated data as in the bootstrap technique [5]. The key
idea of our approach is to use a pseudo-noise resampling for elim-
inating the failure and for recovering the outlier-free performance.
For this purpose, we exploit a censored selection of “successful”
resamplings for which the reliability test is valid in the sense that
the final step of Unitary ESPRIT yields a real eigenvalue pair. Our
technique uses the main idea of the estimator bank approach [6],
[7], although we develop and apply another, more general type
of resampling. Another important difference is that the standard
estimator bank approach [6]–[7] requiresa priori knowledge of
source localization sectors, whereas the reported technique is free
of such a limitation.
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II. DATA MODEL AND UNITARY ESPRIT

Let a uniform linear array (ULA) be composed ofn sensors,
and let it receiveq (q <n) narrowband sources impinging from
the directions�1; � � � ; �q: Assume that there are onlyN snapshots
xxx(1); xxx(2); � � � ; xxx(N) available. The observation vectors can be mod-
eled as [1], [8]

xxx(t) = AAAsss(t) + nnn(t); t = 1; 2; � � � ; N (1)

where

AAA = [aaa(�1); � � � ; aaa(�q)] n� q matrix of signal wavefronts;
aaa(�) n � 1 steering vector;
sss(t) q � 1 vector of source waveforms;
nnn(t) n � 1 vector of sensor noise.

Hence, the measured array data matrixXXX = [xxx(1); xxx(2); � � � ; xxx(N)]
can be modeled as

XXX = AAASSS +NNN (2)

whereSSS = [sss(1); sss(2); � � � ; sss(N)] is the q � N matrix of source
waveforms, andNNN = [nnn(1); nnn(2); � � � ; nnn(N)] is then � N matrix
of sensor noise.

According to [2], introduce the real-valued data matrix

T (XXX) = QQQ
H
n [XXX ���nXXX

�

���N ]QQQ2N (3)

where���n is the n � n matrix with ones on its antidiagonal and
zeros elsewhere

QQQ2l =
1p
2

III l jIIIl
��� l �j���l

QQQ2l+1 =
1p
2

III l 0 jIIIl
0
T

p
2 0

T

��� l 0 �j��� l

(4)

are the sparse unitary matrices defined in [2],III l is the l� l identity
matrix, and(�)H and(�)� stand for Hermitian transpose and complex
conjugate, respectively. Then � n sample covariance of the real-
valued data matrix (3) is given by

R̂RRx =
1

2N
T (XXX)T (XXX)H = EEES���SEEE

H
S +EEEN���NEEE

H
N (5)

whereq � q and (n � q) � (n � q) diagonal matrices���S and���N
contain theq andn�q sample signal and noise subspace eigenvalues,
respectively, whereas the columns of then�q andn�(n�q) matrices
EEES andEEEN contain the corresponding eigenvectors, respectively.

Unitary ESPRIT is based on the solution of the real-valued
invariance equation [2]

KKK1EEES ��� �KKK2EEES (6)

by means of least squares (LS), total LS (TLS), or structured LS
(SLS) [3]. Here, them� n matricesKKK1 andKKK2 are given by

KKK1 =QQQ
H
m(JJJ1 + JJJ2)QQQn = 2 RefQQQH

mJJJ2QQQng
KKK2 =QQQ

H
m(JJJ1 � JJJ2)QQQn = 2 Im fQQQH

mJJJ2QQQng (7)

where them� n matricesJJJ1 andJJJ2 select the first and the lastm
(m<n) rows of an arbitrary matrix with the vertical dimensionn
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[2], respectively. Write the eigendecomposition of the obtainedq� q

matrix ��� as

��� = TTT


TTT
�1
; 


 = diagf!1; !2; � � � ; !qg: (8)

It can happen that either all eigenvalues in (8) are real or some of
them appear as complex conjugate pairs. The latter case corresponds
to the unreliable DOA estimate when the associated signal sources
are not resolved (i.e., they merge and, therefore, result in a complex
conjugate eigenvalue pair). In [2], it is proposed to exploit these
eigenvalue properties in the following test:

Reliability test : All eigenvalues !i; i = 1; 2; � � � ; q are
real:

If this test fails, it is recommended in [2]–[4] to start Unitary
ESPRIT again with more reliable measurements or to use more
data snapshots. However, in many practical situations, neither more
reliable measurements nor additional data snapshots are available.
The idea of the resampling approach presented below is to exploit
synthetically generated (e.g., resampled) data instead of unavailable
additional measured data.

If the reliability test is satisfied in Unitary ESPRIT, the resulting
signal DOA’s can be estimated in a straightforward manner. For
example, for a ULA with maximum overlap [2], the estimates of
the signal DOA’s are obtained as

�̂i = arcsin
�

�d
arctan(!i) ; i = 1; 2; � � � ; q (9)

whered is the interelement spacing, and� is the wavelength. If the
reliability test fails, it is meaningful to omit the complex parts of the
complex conjugate eigenvalues!i: Therefore, the estimates of the
signal DOA’s are then given by

�̂i = arcsin
�

�d
arctan(Ref!ig) ; i = 1; 2; � � � ; q: (10)

Note that in this situation, the outlier occurs because each pair of
unresolved signals is attributed to a single real part of a complex
conjugate eigenvalue pair.

III. PSEUDO-NOISE RESAMPLING

Pseudo-noise-based techniques are known in a variety of applica-
tions (see, e.g., [9]–[11]). In case of a failed reliability test, the aim of
our pseudo-noise resampling technique is to remove the outlier and
to recover the Unitary ESPRIT performance usingexactly the same
data snapshotsthat have been used in Unitary ESPRIT. The central
idea is to resample the data matrix several times using synthetically
generated pseudo-noise, to run Unitary ESPRIT “in parallel” for each
such resampling, and then to select only the “successful” runs for
which the reliability test is satisfied and the outlier is removed. The
n � N resampled data matrix is given by

YYY = XXX +ZZZ (11)

whereZZZ is the n � N matrix of independent zero-mean circular
pseudo-noise drawn from a random generator

EfZZZg = 0; EfZZZZZZHg = �
2
ZNIII; EfZZZZZZT g = 0: (12)

Repeating the resampling runs (11), we can obtain increasingly more
“synthetically” generated data matrices.

In order to maintain an acceptable signal-to-noise ratio (SNR) in
the synthetic (resampled) data, the variance of the pseudo-noise�2Z
should have approximately the same order as the variance�2 of the
original noise (i.e,�2Z should not be too high). A similar constraint

is exploited in [10] and [11]. The consistent estimate of�2 is given
by [12]

�̂
2 =

1

n� q
tracef���Ng =

1

n� q

n

i=q+1

�i (13)

where�1 � �2 � � � � � �n are the ordered eigenvalues of the sample
covariance matrix̂RRRx: In practice, it is meaningful to determine the
variance of the pseudo-noise as

�
2
Z = p � �̂2 (14)

wherep � 1 is a constant chosen by user.
Motivated by the success of modern resampling schemes (e.g.,

bootstrap and jackknife [5]), it is our goal that the pseudo-noiseZZZ

will redistribute the original noiseNNN between array sensors in a
favorable way. Thereby, an improved estimation performance can be
achieved in the successful resampling runs (i.e., where the reliability
test is passed). In this approach, the reliability test can be interpreted
as a censored selector of the results of the pseudo-random resampling.

We stress that the synthetically generated noiseZZZ always decreases
the SNR, and therefore,the resampling itself cannot bring any
performance improvement. However, it is no longer trueif we use
some censoring procedure (for example, the reliability test outlined
in Section II) to select only outlier-free estimators from the whole
number of resampled estimators.

IV. THE PROPOSEDALGORITHM

Let us now formulate the new algorithm that employs the synthetic
(resampled) data (11) every time when the reliability test has failed
for the measured dataXXX: Assume that afterK resampling runs,
we obtainK “parallel” Unitary ESPRIT estimators, where each of
them is applied to a different resampled data matrix (11). Let theith
estimator be

���
(i) = f�̂

(i)
l gql=1 (15)

where �̂
(i)
1 � �̂

(i)
2 � � � � � �̂

(i)
q is the ordered set of Unitary

ESPRIT DOA estimates corresponding to theith resampling run.
Then, provided that the data matrixXXX is fixed, these estimators are
said to form theestimator bank[6]

F = f���(i); i = 1; 2; � � � ; Kg (16)

of dimensionK:

Divide (16) in two disjoint subsets

F1 = f~���
(i)
; i = 1; 2; � � � ; Jg

F2 = f���
(i)
; i = 1; 2; � � � ; K � Jg (17)

where the first subsetF1 containsJ estimators that pass the reliability
test, whereas the second subsetF2 contains the remainingK � J

estimators for which this test fails.
Consider the case when the first subset contains at least one

estimator, i.e., let0<J � K: Let the estimators in the first subset
be given by

~���
(i)

= f~�
(i)
l gql=1; i = 1; 2; � � � ; J: (18)

Apparently, an appropriate combination of the results of these
“successfully” resampled estimators is necessary to obtain a
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TABLE I
SUMMARY OF THE PROPOSEDALGORITHM

final estimate. Assuming that the DOA’s in (18) are sorted as
~�
(i)
1 < ~�

(i)
2 < � � � < ~�

(i)
q for all i = 1; 2; � � � ; J , exploit the robust

median averager to obtain the final DOA estimates [6], [7]

�̂l = medf~�(1)l ; ~�
(2)
l ; � � � ; ~�

(J)
l g; l = 1; 2; � � � ; q (19)

where for arbitrary realb1; b2 � � � ; bJ

medfb1; � � � ; bJg =
(cJ=2 + c(J=2)+1)=2; if J is even
c(J+1)=2; if J is odd

(20)

fc1; � � � ; cJg = sortfb1; � � � ; bJg (21)

and sortf�g stands for the operator of sorting in ascending (descend-
ing) order. The proposed algorithm is based on (9), (10), and (19)
and is summarized in the Table I.

It should be noted that our algorithm requires more computations
than Unitary ESPRIT by a factor1 + Krout, where0 � rout � 1
is the reliability test failure rate for Unitary ESPRIT. Taking into
account the low computational complexity of Unitary ESPRIT, it
can be concluded that for a moderateK, the proposed algorithm
enables an efficient implementation, which can be parallelized easily.
Apparently, this additional increase of the computational burden
relative to the Unitary ESPRIT algorithm can be interpreted as a
payment for the improved (outlier-free) performance.

V. SIMULATIONS

In our simulations, we assume a ULA ofn = 6 omnidirectional
sensors with the half-wavelength spacing,N = 100 snapshots,
uncorrelated equipower sources with zero-mean Gaussian waveforms,
and zero-mean white Gaussian noise. The parameterp = 0:2
was taken in (14), and all results were averaged over 1000 runs.
Throughout the simulations, LS Unitary ESPRIT was used, motivated
by better performance and lower computational cost relative to
TLS Unitary ESPRIT [3]. Three sources impinging from�1 = 0�;
�2 = 4�; and�3 = 30� have been assumed. Fig. 1 shows the DOA
estimation root mean square errors (RMSE’s) of Unitary ESPRIT
and the proposed algorithm (with four fixed values ofK) versus

Fig. 1. DOA estimation RMSE’s versus SNR. Unitary ESPRIT and the
proposed algorithm (for four different values ofK) are compared. All curves
are averaged only over the simulation runs corresponding to outlying Unitary
ESPRIT estimates.

Fig. 2. DOA estimation biases versus SNR. Unitary ESPRIT and the pro-
posed algorithm (for four different values ofK) are compared. All curves
are averaged only over the simulation runs corresponding to outlying Unitary
ESPRIT estimates.

SNR. Note that all curves in this figure were averagedonly over
the simulation runs which correspond to outlying Unitary ESPRIT
estimates. These curves were additionally averaged over the first two
sources. Similar curves for the DOA estimation bias are displayed
in Fig. 2. From these figures, we observe that the restored outlier-
free estimates are biased and that the bias does not decrease with
increasing SNR. This bias can be viewed as a natural payment
for resolving closely spaced sources. However, the RMSE (which
includes the bias component as well) tends to decrease when the
SNR and parameterK grow. Note that both the bias and the RMSE
are significantly lower after resampling than that in outlying Unitary
ESPRIT estimates, and this proves the positive effect of resampling.
From Figs. 1 and 2, we can conclude that the valueK = 30
is sufficient to obtain a satisfactory performance. To illustrate the
performance improvements more, 45 outlying estimates before and
after resampling are displayed in Fig. 3(a) and (b), respectively, for
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(a)

(b)

Fig. 3. Outlying estimates (for SNR= 10 dB). (a) Before resampling. (b)
After resampling(K = 30):

SNR = 10 dB andK = 30: In particular, this figure obviously
demonstrates that the resampling allows us to resolve closely spaced
DOA’s but leads to the biased estimates.

As the outlier rate may change with SNR, it is interesting to study
how the statistical performance is improved when the averaging is
done over all simulation runs, irrespective of the Unitary ESPRIT
performance in each run. Fig. 4 shows the RMSE’s of Unitary
ESPRIT and the proposed algorithm (withK = 30) versus the SNR.
In contrast to Fig. 1, the results in this figure are averaged overall
simulation runsas well as over the first two sources.

From Fig. 4, we can observe noticeable statistical performance
improvements achieved via the proposed algorithm relative to stan-
dard Unitary ESPRIT. These improvements are more pronounced in
the specific “transition” region between the so-called threshold and
asymptotic domains, where outliers affect the statistical performance
of Unitary ESPRIT significantly.

VI. CONCLUSION

The proposed pseudo-noise resampling technique has been shown
to enable the mitigation of outliers in the Unitary ESPRIT algorithm.

Fig. 4. DOA estimation RMSE’s versus SNR. Unitary ESPRIT and the
proposed algorithm(K = 30) are compared with the stochastic CRB. The
results are averaged over all simulation runs.

Our technique results in an improved statistical performance in the
so-called “transition” region between the threshold and asymptotic
domains, where the outliers have a strong contribution to the statisti-
cal performance of Unitary ESPRIT. The proposed algorithm is free
of typical limitations of other known resampling (estimator bank)
techniques in that it does not require any preliminary knowledge of
signal localization sectors.
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