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Abstract—The use of space-division multiple access (SDMA)
in the downlink of a multiuser multiple-input, multiple-output
(MIMO) wireless communications network can provide a substan-
tial gain in system throughput. The challenge in such multiuser
systems is designing transmit vectors while considering the
co-channel interference of other users. Typical optimization
problems of interest include the capacity problem—maximizing
the sum information rate subject to a power constraint—or the
power control problem—minimizing transmitted power such that
a certain quality-of-service metric for each user is met. Neither of
these problems possess closed-form solutions for the general mul-
tiuser MIMO channel, but the imposition of certain constraints
can lead to closed-form solutions. This paper presents two such
constrained solutions. The first, referred to as ‘“block-diagonal-
ization,” is a generalization of channel inversion when there are
multiple antennas at each receiver. It is easily adapted to optimize
for either maximum transmission rate or minimum power and
approaches the optimal solution at high SNR. The second, known
as “‘successive optimization,” is an alternative method for solving
the power minimization problem one user at a time, and it yields
superior results in some (e.g., low SNR) situations. Both of these
algorithms are limited to cases where the transmitter has more
antennas than all receive antennas combined. In order to accom-
modate more general scenarios, we also propose a framework
for coordinated transmitter-receiver processing that generalizes
the two algorithms to cases involving more receive than transmit
antennas. While the proposed algorithms are suboptimal, they
lead to simpler transmitter and receiver structures and allow for
a reasonable tradeoff between performance and complexity.

Index Terms—Antenna arrays, array signal processing, MIMO
systems, signal design, space division multiaccess (SDMA), wireless
LAN.

1. INTRODUCTION

HERE has been considerable recent interest in wireless
multiple-input, multiple-output (MIMO) communications
systems, due to their potential for dramatic gains in channel
capacity. To date, research has focused on the single-user
point-to-point scenario where the transmitter and receiver each
have arrays, and the presence of other co-channel users is not
considered. More recently, attention has shifted to multiuser
MIMO channels, where several co-channel users with arrays at-
tempt to communicate with each other or with some central base
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station [1]-[7]. Research in this area has focused on two related
optimization problems that are of particular interest: throughput
maximization (capacity) and power control. To achieve (sum)
capacity in a multiuser network, one maximizes the sum of
the information rates for all users subject to a sum power con-
straint. On the other hand, the power control problem deals
with minimizing the total transmitted power while achieving a
prespecified minimum Quality-of-Service (QoS) level for each
user in the network. In either case, a satisfactory solution must
balance the desire for high throughput or good QoS at one node
in the network with the resulting cost in interference produced at
other nodes.

The capacity of the vector multiple access channel (where ar-
rays are employed at the transmit and possibly all receive nodes
in the network) has been studied in [8]-[10], and its connection
with the broadcast channel has been explored in [11]. The partic-
ular challenge of the vector broadcast channel is that while the
transmitter has the ability to coordinate transmission from all
of its antennas, the receivers are grouped among different users
that are typically unable to coordinate with each other [12]-[14].
The capacity of the broadcast channel has been studied recently
in [15] and [16], for the special case where each user has only
one antenna, and in [17], for users with arrays of arbitrary size.
A feature common to some of the new work cited above is the
use of a technique developed by Costa known as “dirty paper
coding” [18]. The fundamental idea of this approach is that
when a transmitter has advance knowledge of the interference
in a channel, it can design a code to compensate for it, and the
capacity of the channel is the same as if there were no interfer-
ence. For the multiuser MIMO downlink, the interference due
to signals transmitted to other users is known at the transmitter,
and in principle, a precoder could be used to essentially undo its
effects. The primary drawback of such schemes is that their use
of nontraditional coding leads to increased complexity at both
the transmitter and receiver.

For the special case where the base station has an array but
all users employ single antennas, alternative solutions have been
proposed in [19]-[22]. The more general problem considered
in this paper, where each user may have multiple antennas, has
been approached in two different ways. The first [23] employs
an iterative method of canceling out interuser interference, al-
lowing multiple data subchannels per user as in classical MIMO
transmission methods. The second approach [24] generalizes
the single-antenna algorithms to include beamforming at the re-
ceiver while still using only a single data subchannel per user.
The iterative nature of these algorithms typically results in a
high computational cost.
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In this paper, we present three different noniterative algo-
rithms for choosing downlink transmit vectors for the case
where the users in the network have multiple antennas. The
first, known as block diagonalization (BD), can be thought
of as a generalization of channel inversion for situations
with multiple antennas per user. The BD algorithm can be
applied to either the throughput maximization or power control
problems but is restricted to channels where the number of
transmit antennas (n7) is no smaller than the total number of
receive antennas in the network (ng). The second method is
a successive optimization algorithm that addresses the power
control problem one user at a time. It can outperform BD at
low SNR, but it has the same limitation on channel dimensions.
Finally, we propose a method for coordinated transmit-receive
processing, which relaxes the np > mnp requirement by
combining either of the previous algorithms together with the
method of [24]. This hybrid approach accommodates up to nr
users, regardless of their array sizes. The primary advantage of
this and the other techniques proposed in the paper are that they
provide efficient, closed-form solutions that yield a reasonable
tradeoff between performance and computational complexity.

In the next section, we begin with the MIMO transmission
model that will be assumed in the paper. Section III then outlines
the BD algorithm for two cases: first, where the transmitter has
complete channel information and, second, where it has incom-
plete or partial information. Section IV describes the successive
optimization algorithm for achieving power control with arbi-
trary rate points. Section V discusses coordinated transmit-re-
ceive processing, which is a framework for extending the first
two algorithms to handle larger channel geometries, and finally,
Section VI presents simulation results comparing the algorithms
under various conditions.

II. MIMO TRANSMISSION MODEL AND CHANNEL CAPACITY

A flat-fading MIMO channel with ny transmitters and ng
receivers is typically modeled by an ng X np matrix H so that
the received signal x is

x=Hs+n

where s is the signal vector, and n represents additive noise. In
the flat-fading case, each element of H is viewed as the trans-
mission coefficient linking one of the transmit antennas with
one of the receive antennas. However, this model can also be
easily extended to include frequency selective fading by writing
the overall channel matrix as a block matrix whose component
blocks implement a convolution with the time-domain impulse
response of a particular antenna pair [12]. Thus, any optimiza-
tion algorithm for a flat-fading channel can easily be extended to
include frequency selective channels. For simplicity, flat fading
will be assumed here.

We focus on MIMO transmission systems that include linear
pre- and post-processing performed at the transmitter and re-
ceiver [25]:

d = D(HMd + n)

where d is a data vector of arbitrary dimension 1, and the actual
transmitted signal s = Md is generated using an ny X m modu-
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lation matrix M that includes all channel precoding done at the
transmitter. The received signal x is converted into an estimate
of the original transmitted data d by an m x nr demodulation
matrix D.

Consider a multiuser downlink channel with K users and a
single base station. The base has np antennas, and the jth re-
ceiver has n g ; antennas. The total number of antennas at all re-
ceivers is defined tobe ngp = > ng ;- We will use the notation
{nR1,...,NRK} X nr to represent such a channel (as opposed
to writing ng X np as in a point-to-point MIMO channel). For
example, a {2,2} x 4 channel has a four-antenna base and two
two-antenna users. The channel matrix from the base to the j**
user is denoted by H; and the associated modulation matrix by
M;. The signal at the jth receiver is thus

K
X; = Z HJMLdL + n; (1)
=1
:Hijdj —I—H]MJ&J +l’lj (2)

where Mj and &j are, respectively, defined as the modulation
matrix and transmit vector for all users other than user j com-
bined:

Mj = [Ml M]'_l Mj_|_1 MK] (3)
af=[af ..odl, oo AR @

The high capacity potential of single-user channels can be re-
alized by transmitting multiple data subchannels in parallel. The
optimal way of doing this depends on what information is avail-
able to the transmitter about the channel. If H is known perfectly
to the transmitter, capacity is achieved by choosing M as the
right singular vectors of H and weighting the transmit power
into each vector using water-filling on the corresponding sin-
gular values [12]. If H is unknown, the ergodic capacity can be
achieved for i.i.d. Gaussian channels by choosing M = oI [13].
The difference in performance between these two approaches
has been shown to be small at high SNR [26]. At lower SNR,
the water-filling solution yields some improvement in perfor-
mance, but this must be balanced against the cost of obtaining
knowledge of the channel at the transmitter. On the other hand,
in a MIMO channel where a single base station is simultane-
ously transmitting to multiple independent receivers and gener-
ating co-channel interference, the situation becomes consider-
ably different. In such cases, channel information at the trans-
mitter provides a considerable advantage, particularly at high
SNR, since it can be used for interference mitigation.

The channel modulation and demodulation matrices can be
viewed as attempting to diagonalize the product DHM. Al-
though the optimal solution is not necessarily diagonal, it will
generally be near-diagonal in most situations. The BLAST ap-
proach [14], which does not use any channel precoding, essen-
tially leaves the task of diagonalization to the receiver. On the
other hand, the water-filling solution breaks the channel down
into its dominant subspaces so that optimal power loading into
the subchannels can be performed. In this case, the diagonaliza-
tion is accomplished by a combination of both M and D.

For a multiuser system with an array at the transmitter and
K single-antenna receivers, no coordination is possible among
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the receivers, so channel diagonalization (if desired) must been
done entirely by the transmitter. Perfect diagonalization is only
possible for np > K and can be achieved using channel inver-
sion, e.g., by choosing M = HT, where H' is the pseudo-in-
verse of H [15], [27]. On the other hand, when each of the
K users has multiple antennas, complete diagonalization of the
channel at the transmitter is suboptimal since each user is able
to coordinate the processing of its own receiver outputs. If we
define the network channel and modulation matrices Hs and
Mg as

Hs = [Hf
Ms = [M;

T
HY HE ]

M, Mg |
the optimal solution under the constraint that all interuser
interference be zero is one, where HgMg is block diagonal.
Like channel inversion, a block-diagonal solution imposes two
conditions—one on the dimensions and one on the independence
of the component H; matrices—although it will be shown in
the next section that the conditions are somewhat less strict for
a block-diagonal solution. However, there is still a limitation
on how many users can be accomodated simultaneously. These
conditions are not as restrictive as they appear when viewed
in the context of a system that uses SDMA in conjunction
with other multiple access methods (TDMA, FDMA, etc.).
Consider a base station with a small number of antennas
and a large group of users, where an SDMA-only solution
is impractical. A more realistic implementation would divide
the users into subgroups (organized so that the dimension
requirements are satisfied within each group) whose members
are multiplexed spatially, while the subgroups themselves
are assigned different time or frequency slots. The linear
independence condition can be met by intelligently grouping
the users to avoid placing two users with highly correlated
channels in the same subgroup.

An algorithm for achieving a block-diagonal solution is pre-
sented in the following section.

III. BLOCK DIAGONALIZATION ALGORITHM

This section outlines a procedure for finding the optimal
transmit vectors M s such that all multiuser interference is zero.
Since the resulting product Hg¢M g will be block diagonal, the
algorithm is referred to here as BD. Note that when ng; = 1 for
all users, this simplifies to a complete diagonalization, which
can be achieved using a pseudo-inverse of the channel. While
complete diagonalization could also be applied when ng; > 1
and would have the advantage of simplifying the receiver (each
antenna would receive only one signal), it comes at the cost
of reduced throughput or requiring higher power at the trans-
mitter, particularly when there is significant spatial correlation
between the antennas at the receiver. The two approaches are
compared in the simulation results of Section VI.

A. BD for Throughput Maximization

To eliminate all multi-user interference, we impose the con-
straint that H;M; = 0 for ¢« # j. With a sum power con-

straint, the achievable throughput for the resulting block-diag-
onal system is

1

Coo M, HiM <0, ij 02 + g2 ssVisHs (5
& 1

= M, 20, i;ﬁj;bgz 1+ EHJMJMJHJ < Cs

(6)

where C's represents the sum capacity of the system, and * in-
dicates the Hermitian transpose. If we define H; as

H,=[H ... HT

o HI, HETT ()
the zero-interference constraint forces M; to lie in the
null space of H;. This definition allows us to define the
dimension condition necessary to guarantee that all users
can be accomodated under the zero-interference constraint.
Data can be transmitted to user j if the null space of I:Ij
has a dimension greater than 0. This is satisfied when
rank(ﬁj) < mng. So for any Hg, block diagonalization is
possible if 7y > max{rank(H,),..., rank(Hg)}. Thus, it is
theoretically possible to support some situations where both
nr > nr and rank(Hg) > ng (for example, the {3,3} x4
channel). Assuming the dimension condition is satisfied for all
users, let i/j = rank(I:Ij) < ng — ng;, and define the singular
value decomposition (SVD)

H, =08 [V v ®)

where \7;1) holds the first f/j right singular vectors, and \750)

)

holds the last (ng — L ;) right singular vectors. Thus, \75.0 forms

an orthogonal basis for the null space of H j» and its columns are,
thus, candidates for the modulation matrix M of user j.

Let L ; represent the rank of the product H j\N/'J(.O). In order for
transmission to user j to take place under the zero-interference
constraint, L; > 1 is necessary. In general, L; is bounded by
L; +Ej —np < Ej < min{L;, INlJ} [28]. A sufficient condition
for L; > 11is that at least one row of H; is linearly independent
of the rows of ﬁj. To satisfy this condition, one should take
care to avoid spatially multiplexing users with highly correlated
channel matrices. Note that both the dimension and indepen-
dence conditions allow certain cases that cannot be handled by
channel inversion. The channel inversion approach would re-
quire that all rows of H; be linearly independent of I:IJ While
this is not necessary for block diagonalization, it would still be
beneficial, resulting in a higher value of E]- > 1 and, thus,
greater degrees of freedom for the final solution. Assuming that
the independence condition is satisfied for all users, we now de-
fine the matrix

H, V" 0
HY, — . ©)
0 H, VY

The system capacity under the zero-interference constraint can
now be written as

Cpp = max logy I+ S HsM{MIHYS|. (10)

S n
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The problem is now to find a matrix M’y that maximizes the
determinant. This is now equivalent to the single-user MIMO
capacity problem, and the solution is to let M be the right
singular vectors of HY, weighted by water-filling on the cor-
responding singular values [12]. Thus, a solution for M based
on an SVD and water-filling is the solution that maximizes sum
capacity for the system under the zero-interference constraint.

The block structure of H'y allows the SVD to be determined
individually for each user, rather than computing a single large
SVD. Define the SVD

H;V" = U, [% g} (v viD] (11)

where £, is L; x L;, and v represents the first L; singular
vectors. The product of \N/;-O) and Vj(»l) now produces an orthog-
onal basis of dimension L; and represents the transmission vec-
tors that maximize the information rate for user j subject to pro-
ducing zero interference. Thus, we define the modulation matrix
as

M= [VO V0 VO v v A

(12)

where A is a diagonal matrix whose elements \; scale the power
transmitted into each of the columns of Mg.

With Mg chosen as in (12), the capacity of the BD method

in (6) becomes
»2A
I+—-
o

n

Cgp = ml%x log, (13)

where
¥
h))

(14)
Yk

The optimal power loading coefficients in A are then found
using water-filling on the diagonal elements of ¥, assuming a
total power constraint P. A summary of the BD algorithm is
given below.

Sum Capacity Block Diagonalization

1) For j=1,....K:

Compute \~7§~0), the right null space of
Compute the SVD

H.

7 -

VO _pu 1B 0y o7
HiV; _UJ[O o Vi VT
2) Use water filling on the diagonal el-
ements of ¥ to determine the optimal
power loading matrix A under power con-
straint P.
3) Set

My = [VOV()

VOV VA,

B. BD for Power Control

The problem with sum capacity maximization in a multiuser
channel is that such an approach may result in one or two
“strong” users (large H;) taking a dominant share of the
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available power, potentially leaving weak users with little or no
throughput. Consequently, in practice, the dual problem is often
of more interest, i.e., minimize power output at the transmitter
subject to achieving a desired arbitrary rate (a measure of QoS)
for each user. For the single-user MIMO channel, these two
optimization problems are essentially equivalent. Things are
different for the multiuser case, however, and achieving a set
of arbitrary rate points is much more complex. This problem
is addressed for the case where each user has a single antenna
in [19] and [20]. We investigate below the more general case
where all users may have multiple receive antennas.

If there are K users with desired rates Ry, R», ..., Rk, then
in general, we must simultaneously solve K equations of the
following form:

-1

K
R; _ . NI*ET
2 = T4+ | 021+ ) H;M;M;H;
i=1,i#j

H;M,M:H}

15)
such that tr(MgMY) is minimized. This a nonlinear system
of equations with as many as mpngr unknowns. Because
single-user MIMO capacity is a monotonic function of the
given power constraint, the converse problem of minimizing
transmitted power for a given rate can be solved by water-filling.
Extending this idea to the multiuser case, if the dependence of
the equations can be removed by the addition of constraints, as
done in the previous section with the throughput maximization
problem, the power minimization problem can also be solved
in closed form. However, as before, it may result in a solution
that is not globally optimal.

There are at least two ways to impose constraints so that an
explicit solution to the system of equations in (15) is possible.
We discuss one based on BD here and propose another in the fol-
lowing section. In step 2 of the BD algorithm described above,
water-filling with a total power constraint of P is performed
with the singular values ¥; from all users collected together.
As an alternative, we replace this step by one that performs a
water-filling solution separately for each user, where the power
constraint for the user (denoted P;) is scaled so that the rate
requirement is satisfied. The BD procedure removes all interde-
pendence in the equations and allows an explicit solution to each
of the individual determinant maximizations. The algorithm is
outlined in detail below.

Block Diagonalization for Power Control
1) For each user j=1,...,K:

Compute iﬁm, the right null space of ﬂg.
Compute the SVD

Y, 0 1 0) 1%

0 0}[‘75‘) Vil

Use water-filling on the diagonal ele-
ments of Zj to calculate the power loading
matrix A, that achieves the power con-
straint P; corresponding to rate R;.

2) Form A using the diagonal blocks

H, V" = U, [

3)
M =[OV VOV A2,

o7 (0 1
vy vgY K
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C. Partial Channel Knowledge

Thus far, we have assumed that the transmitter has knowl-
edge of each channel matrix H;. In certain instances, this can
be achieved using training data in a time-division duplex system
or by means of channel feedback from the receiver. However,
there are situations where it is possible to only obtain partial
rather than full channel state information. In this section, we
show how the BD algorithm can be implemented for cases such
that H; = A;B;, where B; is known but A ; is not [29]. One
case where this model is applicable occurs when temporal av-
erages are performed on the subspaces of H; [30], and due to
fast time variation, the signal subspace is more stable than the
corresponding singular values. Another occurs in conjunction
with “physical” channel models based on individual multipath
components. For example, if H; is composed of contributions
from L; multipath rays, we may write

H; =@p;[;®r,
Vi1 0
= [ar,;(0;1) ar;(0;L;)] .
0 ViL;
aill{j (¢5,1)
X X (16)
a%j(ﬁbj,Lj)

where ar ;(6;,:) is the ng; X 1 steering vector at receiver j for
the ith multipath signal arriving from angle 8, ;, aq (5 ;) is the
ny X 1 steering vector at the transmitter for the corresponding
transmit angle of departure ¢; ;, and v;; is the complex gain
for the corresponding path. Under this model, the transmitter
may be able to estimate uplink angles of arrival (¢; ;), but in the
absence of feedback, it may have no information about either
®r ; and T';. Thus, we associate A; with @5 ;I'; (unknown)
and B; with ®7 ; (known) in the factorization H; = A ;B;.
Assume Hj = AjB]', where Aj is NnR X L]', Bj is L]' Xnr,
and L; < ng;. Here, the condition H;M; = 0,1 # j, which
is necessary to make the system block diagonal, is equivalent to
B;M; = 0,7 # j. Thus, we define the matrix Bj as in (3):
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Let the SVD of B be UB ZB [ IJ) V(O)] where V(O)

corresponds to the right null space of B;. The optimal modula—
tion matrix for user j, subject to the constraint that the interuser
interference is zero, is now of the form V( )M’ for some choice
of transmit vectors M’ The system capa01ty of the BD ap-
proach in this case is thus (18)—(21), shown at the bottom of the
page. Equation (20) is a “high SNR” approximation achieved
by dropping the identity matrix in the previous equation. The
last equation has two terms, one of which is dependent on the
noise and terms unknown to the transmitter and the second of
which contains only known variables and the transmit vectors
M; Thus, at high SNR, the optimal transmit matrix will only
depend on the part of the channel that is known (B;) and not on
the part that is unknown (A ;). Equation (21) can be maximized
by choosing M; to diagonalize the matrix inside the determi-
nant, which is accomplished by letting it equal the right singular
vectors of B V< ) . In the standard MIMO capacity maximiza-
tion problem there is still a sum inside the determinant at this
point due to the noise term, which leads to the water-filling solu-
tion. However, because the noise term has been removed using
the high SNR approximation, the determinant is now maximized
by equally dividing the power among each spatial dimension.

IV. SUCCESSIVE OPTIMIZATION ALGORITHM

In this section, we describe another way of constraining the
power control problem in order to achieve a closed-form solu-
tion. In the approach described here, we solve the equations one
user at a time, optimizing each transmit matrix such that it does
not interfere with any of the previous users. User ;7 must opti-
mize its transmit power to compensate for the interference re-
ceived from users 1,..., 7 — 1 and subject to the constraint that
it does not interfere with any of those users. We refer to this ap-
proach as successive optimization (SO) and describe it in detail
below. The capacity-achieving schemes in [11], [15], and [17]
have a similar structure, but they assume at each successive step
that the interfering signals are known completely and use knowl-
edge of these signals in coding the next signal. Here, the only
information used are the statistics of the interfering signals from
previous steps, and hence, the solution will be valid as long as

]§j =[BT B]T_l B;f+1 B% ]T (17)  the channel and the users’ statistics are stationary.
= 1 (0) (0)
<7(0 #x7(0)* % A *
Cap = M;,?iai),(m,KZlogz I+ EAJ»BJ-VBJ, MM}V, )"B} A} (18)
1 ~ < (0)*
= B Zlog2 + 5 ASA;B; VMMV B; (19)
K
0 w7 (0)%
~ M;?iaixl(; [logQ —AjA;| +log, |B; V( )M’ M V( *B* |] (20)
- 1 = (0) (0)
% w1 7(0)% % -7 (0
= ;IOgQ U_%A Aj +M9,_I’]ga1),(...,Kj§=:llog2 |M3 VBj BijVBJ- M;| 2D
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Assuming that user j’s signal is not interfered with by any
subsequent user’s transmissions (j + 1, ..., K), the noise and
interference matrix for user j is

j—1
R,i; =021+ H;M,M;H;.

i=1

(22)

Define the SVD of the previous j — 1 users’ combined channel

matrix as

H; =[HY HY HY " =UA; [VD vO]"
(23)

If the rank of ij is i/]', then \7](»0) contains the last np — ﬁj

right singular vectors. As in the BD solution, we force the mod-

ulation matrix M; to lie in the null space of I:Ij by setting

M; = VEO)M; for some choice of M. We now need to solve
(24), shown at the bottom of the page, such that tr(M;- M;*) is
minimized. Under the constraints we have imposed, the solution
can be found independently for each user. Finding M; to max-
imize the determinant leads to a water-filling solution using the

following SVD:

j—1 -1

AR & <a,31 +3 H]-MiM;?‘H’;) H; V"
=1
= WjAH,jW*f.

J

(25)

The values of A 1,5, the noise power, and the total power con-
straint are used to compute the power loading coefficients Az ;
by means of the water-filling solution, and the modulation ma-
trix for user j then becomes

M, = VIOW;A/2 (26)
where the water-filling coefficients in Az ; are chosen such that
the rate requirement R is satisfied. The total transmitted power
for all users is then the sum of the elements of all Az ;.

Using either the SO or BD methods results in a “rate region,”
which are the convex set of achievable rates for all users at a
fixed total power level. To illustrate the properties of the two
optimization algorithms, Figs. 1 and 2 show two-dimensional rate
regions for a randomly chosen H matrix with four transmitters,
and two users with two antennas each. Fig. 2 uses the same H
as Fig. 1, except that the channel of user 2 is attenuated by 10
dB, thus creating the so-called “near—far” problem. For only
two users, there are three possible regions: the region resulting
from BD, and two regions for SO—one where user one is
optimized before user two (U1) and one for the opposite case
(U2). The BD rate regions are derived by equally dividing
the power among the users and choosing the power loading
coefficients by “local” water-filling, as in Section III-B, rather
than globally. For comparison, an additional curve is shown for
the case where the channel is unknown to the transmitter. This
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Rate Regions at SNRs of 3, 10, and 20 dB
14 | T T T T |

Capacity for user 2

14

Capacity for user 1
Rate RegionBD  ------ Rate Region Ul
—--—- Blind Transmitter ----- Rate Region U2

Fig. 1. Rate regions for a randomly generated H of dimension {2,2} x 4 at
various power constraints.

dB

Rate Regions at SNRs of 3, 10, and 20

Capacity for user 2
I I

14
Capacity for user 1
Rate RegionBD ~ ------.. Rate Region Ul
—--—-- Blind Transmitter - - - - Rate Region U2

Fig. 2. Rate regions for a “Near—Far” H of dimension {2,2} X 4 with 10-dB
difference between users.

latter curve corresponds to transmission to a single user at a
time; therefore, the rate region is the line connecting the blind
channel capacities for the two users. Three sets of curves are
shown, for system SNRs of 3, 10, and 20 dB, respectively. The
point on each curve representing the maximum sum capacity
is indicated with a “*.” In Figs. 1 and 2, on the outermost
(20-dB SNR) curves, the BD solution offers the highest sum
capacity, but on the innermost set of curves (3 dB SNR),
the region where BD offers a performance improvement over
either of the SO curves is very small in Fig. 1 and nonexistent

R; _ sx7(0)* s 2 RV R VER: & ~7(0)
2 = T+ MV H <anI+ZH]MZMiH]~> H,V{" M

j=1 -1

(24)

i=1
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in Fig. 2. This is not necessarily surprising, given the fact
that the BD solution only approaches the true sum capacity
at high SNR. It also implies that at low SNR, SO can yield
better performance than any BD solution.

The asterisks on the BD curves represent the sum capacity
optimization, which provides solutions that are generally good.
However, suppose that a rate point R; = 14 and Ry = 2 is de-
sired. With a total SNR of 20 dB, this could be achieved with
SO by putting user 1 first but could not be achieved with BD.
Additionally, SNR differences between users could have a sim-
ilar effect, as illustrated in Fig. 2. In this case, the BD solution
results in a rate region that is strongly biased toward user 1, but
using SO with user two first results in a more balanced rate re-
gion.

For a system of K users, there are K'! sequentially optimized
solutions, and an important question is how to choose the best
possible ordering. An algorithm for choosing a good ordering
must have a lower computational cost than the “brute force” ap-
proach of computing all possible solutions and still have a high
probability of choosing the best ordering. Empirical tests have
revealed that when users have a different number of antennas,
the best solution frequently chooses the users with smaller num-
bers of antennas to be optimized first. Furthermore, as illustrated
in the previous rate region plots, power savings can sometimes
be obtained by choosing users with attenuated channels first.
One approach that performs reasonably well, but at a significant
computational cost, is to measure the degree of orthogonality
between the spaces spanned by H; and H,. If W; and W,
are orthonormal bases for H; and H;, and oy, is the smallest
nonzero singular value of WjVV;, then 6; = cos™!(ow,) is
the minimum angle between the subspaces spanned by the two
matrices. A reasonable approach would be to schedule the users
in order of increasing #;n g ;, but this only provides a computa-
tional savings over finding all possible solutions when there are
a moderate to large number of users (four or more). More work
is needed to investigate better ordering schemes.

An additional possibility is to combine SO with BD in a hy-
brid scheme. For example, when one user is likely to require
high priority (low SNR, high rate requirement, small number
of antennas, etc), it would be scheduled first in the successive
optimization. If the remaining users have less stringent require-
ments that are more or less equivalent, one could simply find a
block diagonal solution for them, subject to the additional con-
straint that they do not interfere with the first user. Some of the
results in the next section lend support to this idea.

V. COORDINATED TRANSMIT-RECEIVE PROCESSING

The BD and SO algorithms discussed thus far rely on the con-
dition that n > ng. In general, the transmitter can send np in-
terference free data streams, regardless of the number of users.
In this section, we propose a framework for extending the ap-
plicability of the BD and SO algorithms to up to np users, re-
gardless of the users’ array sizes, by coordinating the processing
between the transmitters and receivers. Our approach is based
on the work of [24] for the power control problem. In [24], it was
assumed that all users employ MMSE receivers. Since the trans-
mitter already knows the channels and the signals to be trans-

mitted, it can predict what the MMSE coefficients for each re-
ceiver will be. One data subchannel is transmitted to each user
(thus allowing n users), an initial set of receiver vectors are as-
sumed, and the optimal transmitter and receiver vectors are al-
ternatively recomputed until the solution converges to one with
minimum power. To avoid the computational cost of an itera-
tive approach and to allow for more than one data stream per
user (for which no iterative solution has yet been proposed), we
propose a fast alternative method that uses a reasonable initial
receiver estimate followed by application of either the BD or
SO algorithms. In addition to reducing computation, this allows
a blockwise optimization of the transmit vectors for cases where
multiple data subchannels can be used.

Let m; be the number of spatial dimensions used to transmit
to user j, and let W; be an m; x ng; matrix consisting of the
m; beamformers user j will employ in receiving data from the
base. We now define a new block matrix Hg:

H,
Hs = : =
Hg

WiH,
: @7)
Wi Hg

The matrix Hg has dimensions that are compatible with either
the BD or SO algorithms when ) m; < ny. Using H in place
of Hg in either algorithm allows some interuser interference to
be transmitted, but this interference is eliminated at the output of
the receiver beamformers since it is steered into the nulls of the
‘W beampatterns. The problem then becomes one of choosing
m,; and the beamformers W ; for each user.

The number of subchannels m; allocated to each user must
obviously be 1 when K = nr, assuming that all users are to be
accommodated. The question is somewhat more difficult when
K < np.Insuchacase, the additional degrees of freedom avail-
able to the transmitter can either be used to still send only one
data stream to each user, but with an increased gain, or to al-
locate additional subchannels to some or all users. If nt is not
sufficient to allocate a secondary subchannel to all users, the
question of which user(s) should be given additional subchan-
nels will likely depend on the optimization to be performed. If
system throughput is the primary concern, the optimal solution
may likely be to give extra channels to stronger users. If power
control is the goal, it may be more beneficial to give the users
with weaker channels the extra subchannels. Space does not
permit a detailed discussion of the resource allocation problem
here, but this is a topic of significant current interest.

When the values of m; have been determined, it is then nec-
essary to determine the W ; matrices. The approach in [24] is to
assume an initial set of W; matrices and then iteratively com-
pute Mg and W, given the known receiver structure. To avoid
the computational expense of an iterative solution, we propose
the use of an intelligent initial value for the set of W ; matrices,
followed by computation of the BD solution for the resulting
Hj. As shown in the simulations, this approach can result in a
near-optimal solution. An obvious candidate for W, and the
one we propose below, is to use the m; dominant left singular
vectors of H;. An outline of how coordinated transmit-receive
processing can be used in conjunction with BD is given in the
following algorithm description.
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Coordinated Tx-Rx BD Algorithm

1) s Kt

Compute the sSVvD H; = U;X; V7.

2) Determine m;, which is the number of
subchannels for each user.

3) For j=1,...,
Let W; be the first m; columns of U;.
Calculate H; = WiH;.

4) Apply the BD algorithm using Hg in
place of Hg.

Note that since the beamformers W ; represent only a guess
by the transmitter at the optimal receiver structure, they do not
necessarily correspond to what the receiver will actually use.
The optimal receiver will be the product of the first m; columns
of U; from the BD algorithm and W .

This coordinated processing can be used in conjunction with
the SO algorithm as well by using SO in the place of the BD
algorithm in step 4. We make the following observations. First,
for channels with m; > 1, the optimal receiver is no longer W ;
but a combination of W ; and the left singular vectors from the
second SVD in the BD algorithm. In addition, when m; = 1
for all users, the BD simplifies to a weighted pseudo-inverse of
Hs. The coordinated Tx-Rx algorithms simplify to the standard
BD and SO algorithms, when dimensions permit, by initializing
them with W; = L.

In the simulation results that follow, we use coordinated pro-
cessing with block diagonalization to compare the performance
of a {4,4} x 4 channel for different numbers of subchannels per
user.

VI. SIMULATION RESULTS

In order to compare the maximum achievable throughput of
the BD algorithm with other implementations, several special
cases are considered. First, the number of antennas for each user
(ng;) is held constant, so that for K users and ng; = M, the
total number of receive antennas is ng = M K. We consider
in particular the {1,1,1,1} x 4 and {2,2} x 4 channels. All data
were generated assuming the elements of Hg are independent
complex Gaussian random variables with zero mean and unit
variance.

As mentioned earlier, channel inversion is one method that
has already been proposed for transmit vector selection [25]. For
cases where n > np, this provides a solution that perfectly
diagonalizes Hg subject to the constraint that equal power is
transmitted to each receive antenna. For sake of comparison, the
performance of this algorithm will be included in the plots that
follow. To obtain the capacity of such a scheme, the transmit
power must be scaled to meet the power constraint. Define Hg
as the pseudo-inverse of Hg. Then, the modulation matrix that
satisfies the power constraint P is

VP

s=——Hg. (28)
[re4)i2
The maximum achievable rate (R p;) for this scheme is
Rp[ = 10g2 |I + H5M5M§H2| (29)
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Capacity CCDFS for nr = 4 at 10 dB SNR
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Fig. 3. Complementary cumulative distribution functions of sum capacity for

Gaussian channels for four transmitters.

P
= log,y |(Ing + <7> I (30)
1213
L -1
=Llogy, |1+ p <Z JH?n) (€29
n=1

where L is the rank of Hg, and oy, is its nth singular value.
Note that in this implementation of channel inversion, water-
filling is not performed, and thus, all users are ensured an equal
rate. The BD algorithm implemented with ng; = 1 reduces
to channel inversion but with water-filling employed to maxi-
mize throughput. The plots that follow include results for both
channel inversion and BD when ngr; = 1, and any perfor-
mance difference between the two can be attributed to the use
of water-filling over equal-power transmission.

In the plots that follow, “Inversion” refers to the channel inver-
sion algorithm of (28), “Block Diag” is the sum capacity BD algo-
rithm of Section III. A, and “Blind Tx” is the capacity for the case
where no channel information is available and the users are time
multiplexed. As SNR — oo, we expect the achievable throughput
of the BD algorithm to approach the sum capacity for Hg.

Fig. 3 compares the probability distributions of sum capacity
for the {1,1,1,1} x 4, {2,2} x 4, and single-user 4 x 4 channels.
The SNR is 10 dB, and all channels are independent and iden-
tically distributed (IID) Gaussian. There is only one line repre-
senting the channel inversion algorithm because its performance
is identical for any configuration with the same total ng and nyp.
This does not apply for simulations presented later, when the spa-
tial correlation of the receive antennas is taken into account. It is
interesting to note in Fig. 3 that at low outage probabilities, the
case where each receiver has only one antenna produces better
results when channel knowledge is not assumed and the users are
simply time multiplexed. For the case of two antennas at each re-
ceiver, the average capacity gain derived from exploiting channel
knowledge using the BD algorithm is around 30%. Note that BD
outperforms channel inversion at all outage probabilities.

Fig. 4 shows the capacity as a function of the transmitter array
size with the outage probability fixed at 0.1. The capacity gains
of the BD algorithm are quite sizable here, up to a factor of 4 for
the {1,1,1,1} xny channel, and a factor of 2 for the {2,2} xnp
channel. This is due to the ability of the BD algorithms to opti-
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Capacity as a function of ny at 10 dB SNR
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Fig. 4. Capacity as a function of transmitter array size at a SNR of 10 dB.
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Fig. 5. Capacity as a function of channel correlation between Rx antennas at
an SNR of 10 dB.

mally use the excess degrees of freedom available at the trans-
mitter.

Fig. 5 shows the variation in performance as a function of
channel spatial correlation. For this case, we illustrate the ef-
fects of correlated receive antennas but not transmit antennas.
This is a realistic scenario in which the base station has signifi-
cantly separated elements, but the mobile terminals have closely
spaced antennas. The channels for different users are assumed to
be uncorrelated. In order to reduce the effect of spatial correla-
tion to a single parameter, each column of H; is assumed to have
covariance R, with elements I?; ; = ali=il where 0 < o < 11is
represented on the horizontal axis in the plot. The channel inver-
sion algorithm now has two curves because the channel matrices
for each user are independent, resulting in a completely inde-
pendent channel H; for the {1,1,1,1} x 4 case and a partially
correlated Hg matrix for the {2,2} X 4 case (for no correla-
tion, as was assumed in the previous figures, the Hg matrices
are statistically identical). For the {2,2} X 4 case, as the channel
becomes completely correlated, the capacity of the BD solution
decreases slightly but less than the other algorithms.

Fig. 6 illustrates the performance of the BD algorithm
for the case of partial channel information. Channels were
generated for this example using angle-of-arrival information,
as described by (16). We assume that only @7 ; is known to
the transmitter for each j and that it is used for the value of B
in the BD algorithm. For the Monte Carlo trials used in this
simulation, all angles of arrival are independent and uniformly
distributed, and all multipath gains gains were generated as

Capacity CCDFS for {3,3} x 6 at 10 dB SNR
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Fig. 6. Capacity CCDFs for different cases of partial channel information.

IID complex Gaussian random variables. The plot in Fig. 6
contains data for a {3,3} x 6 channel. Three algorithms are
compared: first, BD with complete channel knowledge (labeled
“complete”), second, BD with partial channel knowledge
(labeled “partial”), and third, TDMA without any channel
knowledge (labeled “none”). The results for complete and
partial channel knowledge for rank-1 channels are close enough
to be indistinguishable in the plot. It can be seen that as the
rank of the channel decreases, the performance difference
between full and partial channel knowledge decreases. In the
rank 1 case, at a 10% outage probability, channel information
(complete or partial) enables nearly double the capacity. At the
same outage rate, both complete and partial channel knowledge
provide a modest gain in capacity for rank-2 channels, but for
full rank channels, partial information in this case provides no
increase in capacity.

Fig. 7 shows the performance of SO for different ordering al-
gorithms, together with the performance of BD. “Optimal” or-
dering is found by a global search, “Angle Algorithm” refers
to ordering with increasing ¢/;n g, as explained in Section IV,
“Frobenius Norm” refers to ordering according to the Frobe-
nius norm of H; (so smaller H; will tend to go first), and
“Random” means random ordering. In all cases, there were six
transmit antennas and three users. Fig. 7(a) shows the results
for the {2,2,2} x 6 channel, and Fig. 7(b) shows results for a
{1,2,3} x 6 channel. The fact that BD achieves better perfor-
mance than even the best SO algorithm supports the idea of hy-
brid optimization mentioned at the end of the last section. It is
obvious that the Frobenius norm, while simple to compute, is
not a very good indicator for ordering (even worse than random
ordering for equal array sizes), but the angle algorithm yields
acceptable performance in both cases.

Fig. 8 compares some of the previous results with the perfor-
mance of coordinated transmit-receive processing, using com-
plementary cumulative density functions (CCDFs) similar to
those in Fig. 3. Included for reference are the inversion and BD
curves for the {2,2} x 4 channel. The {4,4} X 4 channel uses co-
ordinated Tx-Rx processing with either one or two subchannels
per user, labeled in the figure as “1 SC” or “2 SC,” respectively.
For the case of a single subchannel per user, we have shown the
results of using an iterative approach as well (labeled “it.” in
the plot). The iterative algorithm was implemented using max-
imal ratio combining (w; = H;m;), and it alternates between
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Fig. 8. Comparison of probability densities of capacity for different channel

geometries and channel decomposition algorithms at a system SNR of 10 dB.

updating the receiver and transmitter vector until convergence
(using | Mg,,—1 — Mg || as a convergence metric). This ap-
proach did not converge in our simulations when multiple sub-
channels per user were assigned. There are also potential nu-
merical problems with such an approach even for single-channel
cases if there is high correlation between users or if the chan-
nels are rank deficient. The iterative approach here shows some
small gains in performance, but it is inferior in some cases to
the noniterative two-subchannel approach, illustrating the ben-
efit of the “block optimization™ that characterizes the BD and
SO algorithms.
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VII. CONCLUSIONS

Two new approaches for optimizing information transfer in
a multiuser channel have been presented here. Both are subop-
timal in that they do not perfectly achieve the sum capacity of
the channel, but the block diagonalization algorithm asymp-
totically approaches capacity at high SNR. The successive
optimization algorithm is better suited to the problem of mini-
mizing power output for a fixed set of transmission rates than it
is to the problem of maximizing throughput for fixed power. In
low SNR channels, it often performs better than block diago-
nalization, and it appears to also be a good choice for channels
where users have different power levels or rate requirements.
Both algorithms provide a straightforward, computationally
efficient method of choosing “optimized” downlink transmit
vectors and allow for a good tradeoff between performance and
computational complexity. For channels whose dimensions will
not support the block diagonalization or successive optimiza-
tion algorithms directly, joint transmitter-receiver processing
can be used to reduce the dimensionality of the problem so
that these methods can be used. All of the algorithms have a
fixed computational cost that is a function of the dimensions
of the users’ channel matrices. For a system with K users, the
BD and SO algorithms both require 2K SVDs, and the joint
transmitter-receiver version of the BD algorithm can require
as many as 3K SVDs. Many of the alternatives are iterative
algorithms for which the computational cost will be higher and
cannot be known in advance. The algorithms presented here all
have the advantage of a fixed computational cost and provide a
sufficient performance advantage to justify the cost.

All of the algorithms presented require partial or complete
knowledge of the channel at the transmitter. Past studies for the
single-user channel have demonstrated that the gain from having
such knowledge at the transmitter is often small, particularly at
high SNR. In the multiuser case, however, the performance gap
is much larger, and it increases rather than decreases as the SNR
becomes large or as the number of transmit antennas grows.
This may make the potentially high cost of obtaining channel
knowledge at the transmitter more justifiable.
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