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Abstract—The problem of power allocation is studied for a mul-
tiple-input multiple-output (MIMO) decode-and-forward (DF)
two-way relaying (TWR) system consisting of two source nodes
and one relay. It is shown that achieving maximum sum-rate in
such a system does not necessarily demand the consumption of
all available power at the relay. Instead, the maximum sum-rate
can be achieved through efficient power allocation with minimum
power consumption. Deriving such power allocation, however, is
nontrivial due to the fact that it generally leads to a nonconvex
problem. In Part I of this two-part paper, a sum-rate maximizing
power allocation with minimum power consumption is found
for MIMO DF TWR in which the relay optimizes its own power
allocation strategy given the power allocation strategies of the
source nodes. An algorithm is proposed for efficiently finding the
optimal power allocation of the relay based on the proposed idea
of relative water-levels. The considered scenario features low com-
plexity due to the fact that the relay optimizes its power allocation
without coordinating the source nodes. As a tradeoff for the low
complexity, it is shown that there can be waste of power at the
source nodes due to the lack of coordination between the relay and
the source nodes. Simulation results demonstrate the performance
of the proposed algorithm and the effect of asymmetry on the
considered system.

Index Terms—MIMO DF two-way relaying, relay power alloca-
tion, sum-rate maximization with minimum power consumption,
asymmetry.

I. INTRODUCTION

T WO-WAY RELAYING (TWR) has recently attracted sig-
nificant interests [1]–[17]. By establishing bi-directional

links between one relay and two source nodes, the information
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exchange between the source nodes can be accomplished in two
time slots. In the first time slot (first phase) the source nodes si-
multaneously transmit their messages to the relay while in the
second time slot (second phase) the relay forwards the messages
to the destinations. The first phase is called the multiple access
(MA) phase while the second phase is the broadcasting (BC)
phase of TWR. Compared to conventional one-way relaying,
which needs four time slots for the information exchange be-
tween the source nodes, TWR can achieve a higher spectral ef-
ficiency [1].
As the performance of TWR depends on the transmit strate-

gies of both the source nodes and the relay, optimizing the
transmit strategies such as power allocation and beamforming
is one of the main research interests in TWR. The transmit
strategies of the relay and source nodes depend on the relaying
scheme. Similar to one-way relaying, the relaying scheme in
TWR can be amplify-and-forward (AF), decode-and-forward
(DF), etc., depending on the manner that the received infor-
mation is processed at the relay before it is forwarded to the
destinations. In the AF TWR scheme, the relay amplifies and
broadcasts the signals received from the source nodes while
it also amplifies and forwards the noise at the relay. Sum-rate
maximization for multiple-input multiple-output (MIMO) AF
TWR in which the relay and the source nodes all are equipped
with multiple antennas is investigated in [3], [4], while a
mean squared error minimizing scheme for MIMO AF TWR
is studied in [5]. For MIMO AF relaying, low-complexity
sub-optimal solutions can be obtained through diagonalizing
the MIMO channel based on the singular value decomposition
(SVD) or the generalized SVD (GSVD) and thereby transfer-
ring the problem of beamforming/precoding to the problem
of power allocation [3], [5]. Finding the optimal solution,
however, usually requires iterative algorithms with high com-
plexity [4], [5]. The main challenge in investigating AF TWR,
especially AF MIMO TWR, is the strong coupling between
the transmit strategies of the source nodes and the relay due to
noise propagation. As a result of noise propagation, the opti-
mization over the transmit strategies of the source nodes and
the relay usually leads to nonconvex problems. For example,
the information rate of the communication in either direction is
a nonconvex function of the covariance/beamforming matrices
of the source nodes and the relay [1].
Unlike AF relaying, DF relaying does not suffer from the

problem of noise propagation. As a result, DF TWR may
achieve a better performance than AF TWR, especially at low
signal-to-noise ratios (SNRs), at the cost of higher complexity.
Moreover, optimizing the power allocation in DF relaying
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usually leads to convex problems (see for example [6] and
[7]). DF TWR has been studied in [8]–[15]. The optimal power
allocation for DF TWR is studied under a fairness constraint in
[12]. The optimal time division between the MA and BC phases
and the optimal distribution of the relay’s power for achieving
weighted sum-rate maximization are studied in [13]. While the
above two works assume a single antenna at both the source
nodes and the relay, the case with multiple antennas at all nodes
is investigated in [14], [15]. The achievable rate region and the
optimal transmit strategies of both the source nodes and the
relay are studied in [14], where the relay’s optimal transmit
strategy is found by two water-filling based solutions coupled
by the relay’s power limit. The authors of [15] specifically
investigate the optimal transmit strategy in the BC phase of
the MIMO DF TWR. It is shown that there may exist different
strategies that lead to the same point in the rate region.
Given that TWR can achieve a high spectral efficiency, it is

of interest to optimize the power allocation so that high spectral
efficiency can be achieved using minimum power consumption.
Unlike AF TWR, in which the sum-rate can always be increased
when the relay has more transmission power, the maximum
sum-rate of DF TWR can be achieved without consuming all
the available power at the relay. However, finding the sum-rate
maximizing power allocation with minimum power consump-
tion is no longer a convex problem in general. We study this
problem in two different scenarios. In the first scenario, referred
to as relay optimization scenario, the relay optimizes its own
power allocation strategy to maximize the sum-rate of the TWR
with minimum relay power consumption given the power allo-
cation of the source nodes. In the second scenario, referred to as
network optimization scenario, the relay and the source nodes
jointly optimize their power allocation strategies to maximize
the sum-rate of the TWR with minimum total power consump-
tion over both the MA and BC phases. For brevity, the problem
of finding the optimal relay/joint power allocation which min-
imizes the relay/total power consumption among all relay/joint
power allocation schemes that achieve the maximum sum-rate
of the TWR in the relay/network optimization scenario is called
the sum-rate maximization with minimum power consumption.
Part I of this two-part paper studies the problem of sum-rate
maximization with minimum power consumption in the relay
optimization scenario and Part II studies the problem of sum-
rate maximization with minimum power consumption in the
network optimization scenario. The objective of Part I of this
two-part paper is to find the optimal power allocation strategy
of the relay in the relay optimization scenario.1 The contribu-
tions of this part are as follows.
First, we show that the considered problem of sum-rate

maximization with minimum relay power consumption is non-
convex. As the minimization of the relay power consumption
is considered, the problem becomes more complex and the
method used for deriving the optimal relay power allocation
strategy in [7] and [14] is no longer valid. We first derive a
sufficient and necessary condition for a relay power allocation
to be optimal in the considered relay optimization scenario.
Then, based on this condition, we propose an efficient algo-
rithm for finding the optimal solution. The proposed algorithm
can obtain the optimal relay power allocation in several steps
without iterations, i.e., low complexity is achieved.

1Some preliminary results were presented at a conference [18].

Second, we show that while the relay optimization scenario
has the advantage of low complexity, as a trade-off it may lead
to a waste of power at the source nodes (i.e., the same sum-rate
of TWR could be achieved with less power consumption of the
source nodes) because of the lack of coordination between the
source nodes and the relay. We analyze the solution of the relay
optimization problem for different relay power limits and show
that a waste of power at the source nodes happens when the relay
has a power limit less than a certain threshold for each consid-
ered system configuration and the thresholds are also given.
Third, the effect of asymmetry on the considered MIMO DF

TWR is analyzed and demonstrated. It has been observed in [16]
and [17] that the asymmetry on channel gain, relay’s location,
etc., can cause a performance degradation in single-input single-
output (SISO) TWR. We extend this to the MIMO case and
show the effect of asymmetry in power limits and number of
antennas at the source nodes via analysis and simulations.
The rest of the paper is organized as follows. Section II gives

the system model used in this work. The relay optimization
problem is solved and the features of the solution are investi-
gated in Section III. Simulation results are shown in Section IV.
Section V concludes the paper. The Appendix provides proofs
for some lemmas and all theorems.

II. SYSTEM MODEL

Consider a TWR with two source nodes and one relay, where
source node and the relay have and an-
tennas, respectively. In the MA phase, source node transmits
signal to the relay. Here is the precoding matrix
of source node and is the complex Gaussian information
symbol vector of source node . The elements of are inde-
pendent and identically distributed with zeromean and unit vari-
ance. The channels from source node to the relay and from the
relay to source node are denoted as and , respectively.
Receiver channel state information is assumed to be known at
both the relay and the source nodes, i.e., source node knows

and the relay knows . It is also assumed that the relay
knows by using either channel reciprocity or channel
feedback. The received signal at the relay in the MA phase is

(1)

where is the noise at the relay with covariance matrix in
which denotes the identity matrix. The maximum transmission
power of source node is limited to . Define the transmit
covariance matrices , in which stands
for the conjugate transpose, and . Then the sum-
rate of the MA phase is bounded by [19]

(2)

where denotes the determinant. In the BC phase, the relay de-
codes and from the received signal, re-encodes messages
using superposition coding and transmits the signal

(3)

where is the relay precoding matrix for relaying
the signal from source node to source node .2 The maximum
transmission power of the relay is limited to . Note that

2It is assumed as default throughout the paper that the user indices and
satisfy .
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in addition to the above superposition coding, the exclusive-OR
(XOR) based network coding is also used at the relay in the liter-
ature [20]–[22].While XOR-based network codingmay achieve
a better performance than superposition coding, it relies on the
symmetry of the traffic from the two source nodes. The asym-
metry in the traffic in the two directions can lead to a significant
degradation in the performance of XOR in TWR [21], [22]. As
the general case of TWR is considered here and there is no guar-
antee of traffic symmetry, the approach of symbol-level super-
position is assumed at the relay as it is considered in [1] and
[13]. Moreover, for the MIMO case that we are considering, the
superposition scheme can take advantage of the MIMO chan-
nels. In the superposition scheme, the relay uses separate beam-
formers for the signals towards two directions, which guarantees
that each transmitted signal is optimal (subject to the transmis-
sion power constraints) given its MIMO channel. This cannot
be achieved if the relay uses XOR-based network coding.
The received signal at source node can be expressed as

(4)

where is the noise at source node with covariance matrix
. With the knowledge of and , source node sub-

tracts the self-interference from the received signal
and the equivalent received signal at source node is

(5)

Define and let . The sum-rate
of the considered DF TWR can be written as [1], [13], [20]

(6)

where

(7)

in which

(8)

and

(9)

For brevity of presentation, we define the following sum-rate of
the BC phase

(10)

For the relay optimization scenario considered here, the
relay maximizes the sum-rate in (6) using minimum trans-
mission power given the power allocation strategies of the
source nodes.3 Since the relay needs to know and
for decoding and , respectively, as well as for designing

and , the source nodes should send their respective
precoding matrices to the relay after they decide their transmit
strategies. Similarly, the relay should also send and to
both source nodes.

3The term ‘sum-rate’ by default means when we do not specify
it to be the sum-rate of the BC or MA phase.

Given the above system model, we next solve the relay opti-
mization problem.

III. RELAY OPTIMIZATION

In the relay optimization scenario, the relay and the source
nodes do not coordinate in choosing their respective power
allocation strategies. Instead, the relay aims at maximizing

in (6) with minimum power consumption after the
source nodes decide their strategies and inform the relay.
Denote the power allocation that the source nodes decide to

use as .4 For maximizing the sum-rate given
, the relay solves the following optimization problem5

(11a)

(11b)

where stands for the trace. The problem (11) is convex.
However, in order to find the optimal withminimum

among all possible ’s that achieve the maximum of the
objective function in (11), extra constraints need to be consid-
ered. Two necessary constraints are given below

(12a)

(12b)

The considered relay optimization problem (11) with additional
necessary constraints (12a) and (12b) becomes nonconvex. The
above necessary constraints are introduced here to show that the
considered relay optimization problem is nonconvex. For a suf-
ficient and necessary condition for a power allocation strategy
to be optimal in terms of maximizing sum-rate with minimum
power consumption, please see Theorem 2 later in this section.
The constraint (12a) is necessary because, given , due to

the expression of in (7), the power consumption of the
relay can be reduced while the sum-rate in (6) can
be kept unchanged by reducing if .
Note that (12a) is not necessarily satisfied with equality at op-
timality. In fact, it can be shown using subsequent results in
Section III-B that (12a) should be satisfied with inequality for
at least one at optimality. It can also be shown that (12a) can
be satisfied with inequalities for both ’s at optimality even if
the relay has an unlimited power budget. We stress that (12a)
is not sufficient for obtaining the optimal solution. Other con-
straints are also needed including (12b). The constraint (12b)
is also necessary because, given , if (12b) is not satisfied,
then the power consumption of the relay can be reduced while
the sum-rate can be kept unchanged by decreasing

so that .
The constraints in (12) make the considered problem non-

convex. The objective in this section is to find an efficient
method of deriving the optimal power allocation of the relay

4The source nodes may determine their power allocation strategies using dif-
ferent objectives. Note that different source node power allocation strategies
lead to different solutions of the relay optimization problem. However, the ap-
proach adopted in this paper for solving the relay optimization problem is valid
for arbitrary source node power allocation.
5The positive semi-definite constraints and are as-

sumed as default and omitted for brevity in all formulations of optimization
problems in this paper.
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in the considered scenario of relay optimization. It is straight-
forward to see that the power allocation of the relay should be
based on waterfilling for relaying the signal in either direction
regardless of how the relay distributes its power in the two
directions. This is due to the fact that the BC phase is inter-
ference free since both source nodes are able to subtract their
self-interference. If the objective were to maximize
instead of , the optimal strategy of the relay could
be found via a simple search. Indeed, in that case, we could
find the optimal power allocation of the relay and consequently
the optimal by searching for the optimal proportion that the
relay distributes its power in the two directions. However, such
approach is infeasible for the considered problem. The reason
is that first of all it is unknown what is the total power that
the relay uses in the optimal solution. As power efficiency is
also considered, the relay may not use full power in its optimal
strategy. Moreover, from the expression of in (6),
it can be seen that the maximum achievable also
depends on , and . Due to this
dependence, the two constraints in (12) are necessary for the
considered problem of sum-rate maximization with minimum
power consumption. However, these two constraints are im-
plicit in the sense that they are constraints on the rates instead
of on the power allocation of the relay. Such constraints offer
no insight in finding the optimal . In order to transform the
above mentioned dependence of on

, and into an explicit form, and to discover
the insight behind the constraints in (12), we next propose the
idea of relative water-levels and develop a method based on
this idea.

A. Relative Water-Levels

Denote the rank of as and the SVD of as
. Assume that the first diagonal elements of

are non-zero, sorted in descending order and denoted as
, while the last diag-

onal elements are zeros. Define and
. For a given ,

define , and such that

(13a)

(13b)

(13c)

where stands for the projection to the positive orthant.
The physical meaning of is that if waterfilling is per-
formed on ’s, using the water-level ,
then the information rate of the transmission from the relay to
source node using the resulting waterfilling-based power al-
location achieves precisely . The physical meaning of

is that if waterfilling is performed on ’s,
using the water-level , then the sum-rate of

the transmission from the relay to the two source nodes using
the resulting waterfilling-based power allocation achieves pre-
cisely . Note that and are not

the actual water-levels for the MA or the BC phases. They are
just relative water-levels introduced to transform and simplify
the constraints in (12). Denote the actual water-levels used by
the relay for relaying the signal from source node to source
node as . With water-level can be given as

where

. . .

(14)

in which stands for all-zero matrix of size
. The power allocated on is

. The resulting

rate is given by . Using

, and , the constraints in (12a) can be
rewritten as

(15a)

(15b)

Given (13a) and (13b), it is easy to see that (12a) is equivalent
to (15a). Moreover, the equivalence between (12b) and (15b)
can be explained as follows. Given and (12b),
in (11a) becomes . Given (12a), or equivalently
(15a), in (7) with becomes

. Then, substituting the left-hand side of (12b) with
, i.e., in (10), and using (13c), the

constraint (15b) is obtained.
The procedure for the relay optimization can be summarized

in the following three steps:
1. Obtain , and from ;
2. Determine the optimal ;
3. Obtain and from .
The first and the third steps are straightforward given the def-

initions (13a)–(13c) and (14). Therefore, finding the optimal
in the second step is the essential part to be dealt with

later in this section.
From hereon, , and are denoted as

and , respectively, for brevity. The same markers/su-
perscripts on and/or are used on and/or to rep-
resent the connection. For example, and are
briefly denoted as and , respectively. The rate
obtained using water-level is also denoted as .

B. Algorithm for Relay Optimization

Using the relative water-levels and , we can now
develop the algorithm for relay optimization. In order to do that,
the following lemmas are presented.
Lemma 1: .



GAO et al.: SUM-RATE MAXIMIZATION WITH MINIMUM POWER CONSUMPTION FOR MIMO DF TWO-WAY RELAYING— PART I 3567

Proof: The proof for Lemma 1 is straightforward. Using
(13a)–(13c), it can be seen that if

. However, given the definitions
in (2) and (8), it can be seen that is

impossible [19]. Therefore, .
Lemma 2: Assume that there exist and

such that . If

, then as long as

.

Proof: See Appendix A.
Essentially, Lemma 2 states that, for any given such

that assuming , decreasing

and increasing while fixing the total
power consumption leads to a smaller BC phase sum-rate than
that achieved by using .
Lemma 3: Assume that there exist and such

that and , and

(16)

then as long as , it holds true that

(17)

Proof: See Appendix B.
In other words, Lemma 3 states that, for any given ,

decreasing and increasing such that
the BC phase sum-rate is unchanged, the power consumption
increases.
Theorem 1: The optimal solution of the considered relay op-

timization problem always satisfies the following properties

(18a)

(18b)

where is the water-level obtained by waterfilling on
.

Proof: See Appendix C.
According to the proof of Theorem 1, it can be seen that

at optimality and consequently the equation in
(18a) holds when both of the following two conditions are
satisfied: (i) the relay has sufficient power, i.e.,

, and (ii) there is asymmetry between and
, i.e., . If

either of the above two conditions is not satisfied, at
optimality and consequently the equation in (18b) holds.
Theorem 2: In the relay optimization scenario, the condi-

tions (15a), (15b), (18a), and (18b) are sufficient and neces-
sary to determine the optimal with minimum power
consumption among all ’s that maximize the sum-rate

.
Proof: See Appendix D.

It should be noted that the power constraint (11b) is not al-
ways tight at optimality due to the constraints in (15a), (15b)
(or equivalently (12a), (12b)), (18a), and (18b). Each of (15a),
(15b), (18a), and (18b) may refrain the relay from using its full

TABLE I
THE ALGORITHM FOR RELAY OPTIMIZATION

power at optimality. The reason can be found from the proofs
of Theorems 1 and 2. Specifically, (15a) and (18a) make sure
that there is no superfluous power spent for relaying the signal
in each direction while (15b) and (18b) guarantee that the power
consumption of the relay cannot be further reduced without re-
ducing the sum-rate.
Based on the above results in Theorems 1 and 2, the algo-

rithm summarized in Table I is proposed to find the optimal
relay power allocation for the relay optimization problem. In
order to make sure that the sum-rate is maximized while no
power is wasted, the algorithm balances and
via adjusting and according to , and

. The algorithm uses relative water-levels, which
are not explicitly related to corresponding rates. By relating
the relative water-levels to the corresponding rates and power
allocation, the algorithm can be explained more intuitively
as follows. Step 1 performs initial power allocation and ob-
tains the initial water level . The water-levels
maximize among all possible combinations
subject to the power limit of the relay. Step 2 checks whether

is upper-bounded by . If
, the relay reduces its transmission power

allocated for relaying the signal from source node 2 to source
node 1 so that in Step 3. In the case that

is reduced in Step 3, in terms of increasing , extra
power becomes available for relaying the signal from source
node 1 to source node 2. Therefore, if ,
the remaining power of the relay is allocated for relaying the
signal from source node 1 to source node 2 at first in Step 4.
Later in Step 4, it is checked whether
under the new power allocation. If ,
the relay reduces its transmission power allocated for re-
laying the signal from source node 1 to source node 2 so
that in Step 5. Steps 6 checks whether

is satisfied. In the case that
this constraint is not satisfied, the power allocation is revised
in Step 6 or 7 so that and the
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power consumption of the relay is minimized. We stress that the
above procedure in the proposed algorithm, which terminates
after Step 6 or 7, is not iterative.
The following theorem regarding the proposed algorithm is

in order.
Theorem 3: The water-levels obtained using the algorithm

for relay optimization in Table I achieve the optimal relay
power allocation for the considered relay optimization problem
of sum-rate maximization with minimum relay power con-
sumption.

Proof: See Appendix E.
Depending on the source node power allocation strategies

and the power limit at the relay, different results can be obtained
at the output of the algorithm in Table I. Define the following
power thresholds

, and

where the subscripts ‘sm’, ‘md’, and ‘lg’ mean ‘small’,
‘medium’ and ‘large’, respectively. Recall from Lemma 1
that . Denote the situation that

as Case I and the situation that
as Case II. We next analyze the op-

timal solution in these two cases in detail.
For Case I, it can be seen that .

According to the value of , there are five subcases which
are discussed one by one in the following text.
Subcase I-1: is small such that . In this

subcase, the algorithm proceeds through Steps 1-2-6 and

(19a)

(19b)

at the output of the algorithm, while (15a) and (15b) are satis-
fied with inequality. Note that some power of the source nodes
is wasted in this subcase. Since the sum-rate is
bounded by due to the small power limit
of the relay, the source nodes could use less power without
reducing if there would be coordination in the
system. Indeed, if the source nodes could be coordinated to
optimize their power allocation as well, they only need to use
the power of where is the
optimal solution to the following problem

(20a)

(20b)

(20c)

(20d)

It can be shown that
in this subcase. Therefore, the power of

is wasted at the source nodes because of the
lack of coordination.
Subcase I-2: increase such that .

Then the algorithm proceeds through Steps 1-2-6.
Subcase I-3: increase such that .

Then the algorithm proceeds through Steps 1-2-3-4-6.

Subcase I-4: further increase such that
. Then the algorithm proceeds through Steps 1-2-3-4-5-6.
Subcase I-5: further increase such that .

Then the algorithm proceeds through Steps 1-2-3-5-6.
In the above subcases when , it holds that

(21a)

(21b)

at the output of the algorithm, while (15a) is satisfied with in-
equality for each such that and (15b) is satis-
fied with equality. For these subcases, the sum-rate
is bounded by and there is no waste of power at the
source nodes.
For Case II, it holds that

according to Lemma 1. Assume that and
find such that . Let
and define . It can be seen

from Lemma 3 that . Since ,
it holds that . Therefore, for Case II, the power
thresholds satisfy . The following
subcases appear as increases.
Subcase II-1: is small such that . Then,

the algorithm proceeds through Steps 1-2-6 and

(22a)

(22b)

at the output of the algorithm, while (15a) and (15b) are satisfied
with inequality.
Subcase II-2: increase such that .

Then the algorithm proceeds through Steps 1-2-3-4-6 and

(23a)

(23b)

at the output of the algorithm, while (15a) is satisfied with
equality for and inequality for . Note that there is
waste of power at the source nodes for the above two subcases
as long as because the sum-rate is
bounded by .
Subcase II-3: increase such that .

Then the algorithm proceeds through Steps 1-2-3-4-6-7.
Subcase II-4: further increase such that

. Then the algorithm proceeds through Steps
1-2-3-4-5-6-7.
Subcase II-5: further increase such that .

Then the algorithm proceeds through Steps 1-2-3-5-6-7.
In the subcases when , it holds that

(24a)

(24b)

at the output of the algorithm, while (15a) is satisfied with
equality for and inequality for , and (15b) is
satisfied with equality. The optimal is found in Step 7 of the
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Fig. 1. Illustration of , and for the scenario of relay optimiza-
tion. (a) Subcase I-1: . (b) Subcase II-2:

.

proposed algorithm. For these subcases, there is no waste of
power at the source nodes.
Two of the above subcases, i.e., Subcases I-1 and II-2, are

illustrated in Fig. 1.
From the above discussion, it can be seen that the algorithm

in Table I obtains the optimal power allocation in at most seven
steps without iterations.
Recall that the sum-rate of DF TWR is bounded by both the

sum-rate of the MA phase and the sum-rate of the BC phase. In
the scenario of relay optimization, the relay optimizes its power
allocation which affects the sum-rate of the BC phase. Since
the relay may or may not use all its available power at opti-
mality (i.e., for the optimal power allocation), the sum-rate of
the BC phase is not necessarily maximized at optimality. More-
over, it is also possible that the sum-rate of the BC phase at
optimality is not even the maximum sum-rate of the BC phase
that can be achieved using the power consumed by the relay
at optimality. We specify the term efficient to describe such
optimal power allocation of the relay that maximizes the BC
phase sum-rate with the actually consumed power at
the relay. Thus, the relay’s power allocation is efficient if it gen-
erates the maximum sum-rate for broadcasting the messages of
the source nodes given its power consumption. For example,
when the relay uses all its available power at optimality, the op-
timal power allocation of the relay is efficient if it maximizes
the sum-rate of the BC phase, and inefficient otherwise. When
the relay uses the power at optimality, the optimal
power allocation is efficient if the achieved sum-rate of the BC
phase is themaximum achievable sum-rate of the BC phase with
power consumption , and inefficient otherwise. Then the fol-
lowing two conclusions can be drawn for the scenario of relay
optimization.
First, the optimal relay power allocation in the relay opti-

mization scenario is always efficient for Case I (i.e.,

). In such a case, it can be seen from (19a) and
(21a) that at optimality regardless of whether the
relay uses all its available power. Therefore, the BC phase sum-
rate is always maximized given the relay’s power con-
sumption. However, the optimal relay power allocation is ineffi-
cient for Case II (i.e., ) as long as

. Moreover, the larger the difference between
and in this case, the more inefficient the optimal relay
power allocation becomes when . Given the defi-
nitions (13a)–(13c) and Lemma 1, in Case
II indicates that one source node uses more power, has more an-
tennas and/or better channel condition compared to those of the
other source node. Indeed, if the power budget, number of an-
tennas, and channel conditions are the same for the two source
nodes, as an extreme example, it leads to .
Therefore, it can be seen that the asymmetry between the power
budget, number of antennas, and/or channel conditions can de-
grade the relay power allocation efficiency in the scenario of
relay optimization.
Second, the considered relay optimization scenario may re-

sult in the waste of power at the source nodes. However, the
relay never wastes any power. This is due to the fact that the
relay is aware of the source node power allocation strategies
and optimizes its own power allocation based on them. As a re-
sult, it can use only part of the available power if its power limit

is large. However, the relay power allocation strategy is
unknown to the source nodes when the source nodes decide
their power allocation strategies. Therefore, the possibility of
wasting power in the relay optimization scenario can be viewed
as the tradeoff for low complexity. Indeed, in the relay optimiza-
tion scenario, there is no coordination between the relay and the
source nodes. As a result, it is almost impossible to achieve the
maximum sum-rate with minimum total power consumption re-
ferred to as network-level optimality. In order to achieve the
network-level optimality, the scenario of network optimization,
in which the relay and the source nodes jointly maximize the
sum-rate of the TWR with minimum total power consumption,
is considered in Part II of this two-part paper.

IV. SIMULATIONS

In this section, we provide simulation examples for some re-
sults presented earlier and demonstrate the proposed algorithm
for relay optimization in Table I. The general setup is as follows.
The elements of the channels and are generated
from complex Gaussian distribution with zero mean and unit
variance unless otherwise specified. The noise variances
and are equal to each other and denoted all as . While
the source node power allocation strategy can be arbitrary,
we use for simulations the that maximizes the MA phase
sum-rate . The rates , and
are briefly denoted as , and , respectively, in the
figures in this section.
Example 1: A Demonstration of Lemma 2. It is assumed that

the number of antennas at the relay is 8 while source node 1
has antennas and source node 2 has antennas.
Each curve in Fig. 2 shows the sum-rate versus
the water-level for a given ratio of over . In
each curve, for each given , the relay consumes all the re-
maining power to maximize . Therefore, the power con-
sumption of the relay is fixed and equals . For each curve,
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Fig. 2. versus under different .

is different. The curve at the bottom corresponds to the ratio
equal to 4 dB. For each time, when the ratio of

over increases, a new curve of versus , which
lies above the previous curve, is plotted. The curve at the top
corresponds to the ratio equal to 7 dB. It can be seen
from Fig. 2 that the sum-rate is a nonconvex function
of . However, is non-decreasing before reaching
the maximum and non-increasing after that. Note that

when the BC phase sum-rate is maximized. As
a result, it can be seen that increasing and
decreasing while fixing the total power con-
sumption leads to a smaller BC phase sum-rate for any given

. Therefore, Fig. 2 verifies the result presented in
Lemma 2.
Example 2: The Relay Optimization Problem. Fig. 3(a) com-

pares the BC phase rates at optimality of the relay optimiza-
tion problem, which considers power consumption minimiza-
tion, with the BC phase rates at optimality of the problem (11),
which does not minimize the power consumption, under dif-
ferent . One channel realization is shown. The specific
setup for this simulation is as follows. The number of antennas

, and are set to be 6, 5, and 8, respectively. The power
limits for the source nodes are set to be
W. The noise variance is normalized so that . The

MA phase rates for this channel realization are 20.7 bits/s/Hz
for , 11.2 bits/s/Hz for , and 11.0 bits/s/Hz
for . In Fig. 3(a), represents where ’s,
are the optimal solutions (obtained using CVX [23]) to the

problem (11) which does not minimize the power consump-
tion, and represents where ’s, are the op-
timal solutions to the relay optimization problem considering
power consumption minimization obtained using the algorithm
in Table I. It can be seen from Fig. 3(a) that when

is small. The reason is that is small when is
below certain threshold. As a result, the constraints in (12) and
(18b) are always satisfied and the solutions to the problem (11)
and the relay optimization problem are the same. As in-
creases, becomes larger and is finally bounded by

, while the relay power consumption is not necessarily

Fig. 3. Illustration of relay optimization. (a) in the optimal solution of the
sum-rate maximization problems with and without minimization of power con-
sumption, respectively, versus . (b) Relay power consumption, ,
and in the optimal solution of the sum-rate maximization problems with
and without minimization of power consumption, respectively, versus .

minimized in the solution of the problem (11) which does not
consider power consumption minimization. This can be seen
from the first subplot of Fig. 3(b), which shows that the power
consumption in the solution derived using the proposed algo-
rithm, denoted as , saturates when W, while the
power consumption in the solution to the problem (11) which
does not consider power consumption minimization, denoted as
, keeps increasing. As a result, as can be seen from the second

subplot of Fig. 3(b), never exceeds , while

grows beyond when is bounded

by . Meanwhile, it can also be seen from the second
subplot of Fig. 3(b) that the maximum sum-rates
for the two compared solutions are the same, both of which
equal to when and equal
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to when . Thus, this example
demonstrates that the proposed algorithm in Table I achieves
maximum sum-rate in the scenario of relay optimization with
minimum power consumption.
Example 3: Comparison with XOR-Based Relay Scheme.

We must first clarify that there is no XOR-based scheme for
us to conduct a fair comparison with the proposed scheme.
The reason is that no XOR-based scheme has been proposed
to maximize the sum-rate of the TWR and at the same time
minimize the power consumption of the relay as the proposed
scheme does. Therefore, to perform this comparison, we need
to use the XOR-based scheme that maximizes the sum-rate of
MIMO DF TWR without considering the power consumption
as in [7]. First, we compare the maximum sum-rates achieved
by the XOR-based scheme of [7] and the proposed scheme
versus the channel asymmetry. In this simulation, we set the
number of antennas such that , and .
Power limits are . Noise
power is set to 1. The elements of the channels and

are complex Gaussian distributed with zero mean and
variances and , respectively. Therefore, when becomes
larger, the channels become more asymmetric. For each value
of , the sum-rates obtained by the XOR-based scheme of
[7] and the proposed scheme are averaged over 5000 channel
realizations and are shown in Fig. 4(a), denoted as
and , respectively. From this figure, it can be seen that
the XOR-based scheme is better than the proposed scheme
when the channel asymmetry is not very large. On the other
hand, the proposed scheme becomes superior when the channel
asymmetry is large, i.e., . Moreover, it can be seen
that the XOR-based scheme is much more sensitive to channel
asymmetry as its performance decreases much faster than that
of the proposed scheme when the asymmetry increases.
We also compare the maximum sum-rates achieved by the

XOR-based and the proposed schemes versus both and
. In this simulation, the number of antennas, noise power, and
power limits of the source nodes are the same as in the previous
simulation. We vary and so that increases from
3W to 6W and increases from 1 to 3. For each combination of

and , we obtain the sum-rates of the XOR-based scheme
and the proposed scheme (averaged over 5000 channel realiza-
tions) and show their difference in Fig. 4(b). From this figure, it
can be seen that, the difference of the two compared schemes is
small in terms of the achieved sum-rate when is large. In-
deed, even for the symmetric case , the advantage of the
XOR-based scheme vanishes as the power limit increases.
Similarly, for the asymmetric case, the advantage of the pro-
posed scheme also decreases when increases. Therefore,
it shows that neither of the proposed scheme and the XOR-based
scheme is definitely superior. The XOR-based scheme achieves
higher sum-rate than the proposed scheme when the channel is
symmetric. The proposed scheme, on the other hand, is better
for the case of asymmetric channels. Nevertheless, when the
relay power limit increases, the difference of the two schemes
vanishes.
Example 4: The Effect of Asymmetry in Source Node Power

Limits and Number of Antennas. The specific setup for this ex-
ample is as follows. The noise variance is normalized so that

. The number of antennas at the relay, i.e., , is set to
be 6. The power limit of the relay, i.e., is set to be 3W. The

Fig. 4. Comparison with XOR based relay scheme. (a) Sum-rates vs. ,
comparison of the XOR-based scheme of [7] (without considering power
consumption minimization) and the proposed scheme averaged over 5000
channel realizations W . (b) Difference of sum-rates vs. and
, comparison of the XOR-based scheme of [7] (without considering power
consumption minimization) and the proposed scheme averaged over 5000
channel realizations.

total number of antennas at both source nodes is fixed such that
. The total available power at both source nodes

is also fixed such that . Given the above
total number of antennas and total available power at the source
nodes, the relay optimization problem is solved for different

, and for 1000 channel realizations. The resulting
average sum-rate and average power consumption of the relay,
and the percentage of efficient power allocation at optimality are
plotted in Figs. 5(a), (b), and (c), respectively, versus the differ-
ence between the number of antennas and the difference between
the power limits at the source nodes. FromFig. 5(a), it can be seen
that the sum-rate at optimality of the relay optimization is the
largest when there is no asymmetry in the number of antennas at
the source nodes and no asymmetry or only small asymmetry in
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Fig. 5. Effect of asymmetry: the average sum-rate, average relay power con-
sumption, and percentage of efficient power allocation at optimality of relay
optimization versus the difference between number of antennas and the differ-
ence between power limits at the source nodes in 1000 channel realizations.
(a) Sum-rate at optimality. (b) Relay power consumption at optimality. (c) Per-
centage of efficient power allocation at optimality.

the power limits of the source nodes. As the asymmetry becomes
larger in either number of antennas or power limits, the sum-rate
at optimality of the relay optimization decreases. Therefore, it
can be seen from this figure that the asymmetry in the above as-
pects leads to smaller sum-rate at optimality of the considered
relay optimization problem. Relating Figs. 5(b) and 5(c) to 5(a),

twomore observations can bemade. First, the relay does not nec-
essarily use all the available power for sum-rate maximization
in the relay optimization scenario. Second, the asymmetry in the
number of antennas and power limits leads to low power allo-
cation efficiency. It can be seen from Fig. 5(b) that when one
of and is positive while the other is
negative, the relay uses a part of its available power. However,
the achieved sum-rate is smaller compared to the sum-rate in
the case when and (see
Fig. 5(a)). In this situation, since the average power consump-
tion and the average sum-rate are both low, the percentage of effi-
cient power allocation is larger than0 but less than the percentage
when and , as can be seen from
Fig. 5(c). When and are both positive or
both negative, the relay uses more power than the power used in
the case when and while the
achieved sum-rate is smaller than that in the latter case. In this
situation, since the average power consumption is high while the
average sum-rate is low, the percentage of efficient power al-
location is very low, if not zero, as can be seen from Fig. 5(c).
The above facts become more obvious when the asymmetry be-
comes larger. Therefore, it can be seen from Figs. 5(b) and 5(c)
that the asymmetry on the power limits and the number of an-
tennas can lead to low power allocation efficiency.

V. CONCLUSION

In Part I of this two-part paper, we have solved the problem
of sum-rate maximization with minimum power consumption
for MIMO DF TWR in the scenario of relay optimization. For
finding the optimal solution, we have found a sufficient and nec-
essary optimality condition for power allocation. Based on this
condition, we have proposed an algorithm to find the optimal
solution. The proposed algorithm allows the relay to obtain its
optimal power allocation in several steps. We have shown that,
as a trade-off for low complexity, there can be waste of power
at the source nodes in the relay optimization scenario because
of the lack of coordination. We have also shown that the asym-
metry in the number of antennas and power limits at the source
nodes can result in the sum-rate performance degradation and
the power allocation inefficiency in MIMO DF TWR. Next, in
Part II of this two-part paper, we will investigate the scenario
in which the relay and the source nodes jointly optimize their
transmit strategies to achieve the network-level optimality of
sum-rate maximization with minimum total power consumption
for the MIMO DF TWR.

APPENDIX

A. Proof of Lemma 2

Lemma 2 is proved in two steps, i.e., Steps A and B. In StepA,
we prove that can be increased by modifying the

current power allocation on two specific subchannels. In Step B,
we show that may be further increased.

Step A: can be increased. Given the fact that

, it can be shown that

as long as .

As a result, there exist and such that
and . Define
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where
and is a positive constant. It can be seen

that is strictly concave in .
Set . The op-
timal allocation of the power on and that
maximizes is
and where is a
function of and is the optimal water level. It can
be shown that . There exist two cases, i.e.,

and . In the case when
, it follows that

. The power allocation
on and using and is

(25a)

(25b)

Since is strictly concave as mentioned above, it can
be seen that the power allocation

(26a)

(26b)

which reduces and increases , both by
, yields higher than

the power allocation in (25).
Therefore, the sum-rate achieved

using (26) and

(27a)

(27b)

is larger than . This is the first step of increasing sum-

rate. Moreover, it can be seen that there exists such that

(28a)

(28b)

and the power allocation

(29a)

(29b)

(29c)

which spreads the power
over ’s, , achieves even higher sum-rate than that
achieved by the power allocation specified by (26) and (27).
This is the second step of increasing the sum-rate.
For the second case in which ,

the following process is adopted. Similar to the two steps
of increasing the sum-rate in the first case, the sum-rate

increases after each of the following

two adjustments of power allocation. First, reduce from
to . Then, spread the

reduced power
over ’s by finding and using which satisfies

(30)

After the adjustments, it is straightforward to see that the total
power allocated on and is reduced from

to
. In consequence, there exists a new

optimal water level based on which the optimal allo-
cation of the power , i.e.,
and , maximizes
when in is substituted by . Since , it can
be seen that . Update and
so that and . Then the above
process of reducing to and
finding the new and the new can be repeated
until (a) or until (b) .
The former matches the condition for the first case discussed
in the previous paragraphs and therefore can be dealt with in
the same way as in the first case, which leads to (29). The
latter implies that , in which
case the power allocation can also be equivalently written as
(29). Note that during this process the sum-rate

increases. Therefore, summarizing the above two
cases of and , it is proved
that the sum-rate can be increased by reducing from

to and using the power
allocation in (29).
Step B: may be further increased. Keep the above

selected unchanged. As long as there exists such that
and , this can

be selected as and the procedure of reducing from
to and spreading the

reduced power over ’s, as specified in (29) can
be performed. This process can be repeated until

and .
Note that the sum-rate in-

creases in the above process for every qualifying . The
resulting power allocation on ’s, is equiv-
alent to since

if .
From the procedure described in the previous paragraphes,
the resulting power allocation on ’s, is
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. According to the power
constraint and the fact that

the total power consumption is fixed at all time, it can be seen
that .
Summarizing the above two steps, Lemma 2 is proved.

B. Proof of Lemma 3

Given that , we have . According
to Lemma 2, there exists such that

(31)

and

(32)

Therefore, given that

(33)

it is necessary that . As a result, it leads to

(34)

Lemma 3 is thereby proved.

C. Proof of Theorem 1

First we prove that the optimal water-levels must sat-
isfy the condition (18a). It can be seen that the max-
imum is achieved with minimum power
consumption using when

at optimality. Therefore, it
is necessary that given that

at optimality. Let us consider the case when
at optimality. Ac-

cording to the constraint (15a), we have that
at optimality. Similarly, it can be seen that
at optimality. Since , it leads to the result
that at optimality. Assuming that

at optimality when , it in-
fers that . However, it can be seen that the
power allocation using does not provide
the maximum achievable according to Lemma 2.
Consequently, the resulting power allocation is not optimal.
It contradicts the assumption that
at optimality. Thus, the above assumption is invalid and
it is necessary that at opti-
mality when . Similarly, it can be proved that

at optimality when for the
case when . Therefore, it
always holds true that
if .
Next we prove that the optimal water-levels must sat-

isfy condition (18b). It is straightforward to see that
. Moreover, according to the

constraints (15a) and (15b), it is not difficult to see that
when

at optimality. Indeed, if , then (15b)
cannot be satisfied. If ,

then (15a) cannot be satisfied. Combining the above two facts,
we have
when at optimality. For the case that

, the above constraint can be
written as . For this case,
it is straightforward to see that the achieved sum-rate is not
maximized if . Therefore,
the optimal water-levels must satisfy the condition (18b) when

given that . For
the case when , it can be seen
that given that at
optimality. Otherwise, it can be shown that either of the fol-
lowing two results must occur. If
and , then the sum-rate
can be increased. If and

, then the constraint
(15a) cannot be satisfied. Therefore, given that

for the case when
and at optimality, we have

. Consequently, the constraint
can be

rewritten as . It is
straightforward to see for this case that
does not maximize the sum-rate. Therefore, it can also be con-
cluded that when

. Combining the above two cases of
and ,

it can be seen that the optimal water-levels always satisfy the
condition (18b) given that .
The above two parts complete the proof of Theorem 1.

D. Proof of Theorem 2

The necessity of the constraints (15a) and (15b) is straight-
forward. It can be seen that the power consumption can be re-
duced without reducing the sum-rate when these
constraints are not satisfied. The necessity of the constraints
(18a) and (18b) is proved in Theorem 1 in Appendix C. There-
fore, we next prove the sufficiency of the constraints (15a),
(15b), (18a), and (18b).
We use proof by contradiction. Assume that the above con-

strains are not sufficient to determine the optimal with
minimum power consumption among all ’s that maxi-
mize the sum-rate . Then there exists sat-
isfying (15) and (18a)–(18b) that maximizes the sum-rate and
does not minimize the power consumption. Consequently, at
least one of and can be reduced without reducing

. We consider the following two cases. The first case
is when while the second case is when . In
the first case, satisfies (18a) and it is straightforward
to see that reducing is not optimal according
to Lemma 3. Reducing , on the other hand,
necessarily leads to the decrease of given that (15b)
is satisfied. Therefore, reducing either of and results
in the decrease of the sum-rate, which contradicts the previous
assumption. In the second case, satisfies (18b). Ac-
cording to Theorem 2, it is necessary that

. From Lemma 2, it can be seen that it is not
optimal to reduce only one of and . Reducing both of

and , on the other hand, necessarily leads to the de-
crease of given that (15b) is satisfied. Therefore, it
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is impossible that there exists with , satisfying
(15) and (18b), that maximizes the sum-rate while the resulting
power consumption can be reduced. Combining the above two
cases, it can be seen that the power consumption cannot be re-
duced given that the maximizes the sum-rate subject
to the relay power limit and satisfies (15) and (18a)–(18b). This
contradicts the assumption that the above constrains are not suf-
ficient to determine the optimal with minimum power
consumption among all ’s that maximize .
This completes the proof for Theorem 2.

E. Proof of Theorem 3

The optimality of the pair obtained using the algo-
rithm in Table I is proved in three steps: A) Steps 2–5 of the algo-
rithm in Table I find that maximizes with
minimum power consumption subject to the constraint in (11)
and the constraint (15a). B) The pair obtained from
Steps 2–5 of the algorithm in Table I needs to be modified to
maximize the objective function in (11) with minimum power
consumption. Step 6 of the algorithm in Table I deals with two
cases in which obtained from the previous steps can be
simply modified to obtain the optimal pair . C) Step 7
of the algorithm in Table I deals with the remaining case which
is more complicated and finds the corresponding optimal pair

in this case. It is not difficult to see that the constraint
in (11) is always satisfied in any step of the proposed algorithm.
It can also be seen that Steps 1, 2, and 6 ensure that (18b) is sat-
isfied if at the output of the algorithm while Steps 3 to
5 ensure that (18a) is satisfied if at the output. There-
fore, in the following we only consider the constraints (15a) and
(15b), which are equivalent to the constraints in (12).
A) Steps 2–5 find the pair that maximizes

with minimum power consumption subject to the constraint
(15a). Note that the maximum with minimum power
consumption is achieved by for some
specific if (15a) is satisfied. Therefore, it is equivalent
to finding such that maximizes
subject to (15a). The initial power allocation in Step 1 of the
algorithm in Table I using maximizes

. Regarding the constraint (15a), the fol-
lowing cases are possible.
A-1) . In this case, the constraint (15a) is satisfied

and is the desired .
A-2) and . In this case, the constraint (15a) is

not satisfied for . The relay power consumption can be reduced
without decreasing by increasing until .
Then, can be increased by decreasing until the
relay power limit is reached or until .
A-3) . In this case, it is straightforward to see

that the pair that maximizes with minimum
power consumption subject to the constraint (15a) satisfies

.
The above three cases are determined in Step 2. Case A-1 is

dealt with in Step 2 of the algorithm in Table I. Case A-2 is dealt
with in Steps 3 and 4. Case A-3 is dealt with in Steps 3 and 5.
B) Steps 6 and 7 of the algorithm in Table I find the op-

timal pair that maximizes the objective function in
(11) with minimum power consumption. Since

, it can be seen that should either
increase or remain the same in order to satisfy the constraint

(15b) given that the constraint (15a) is satisfied. Therefore, the
optimal power allocation can be derived by increasing and/or
, if necessary, based on the power allocation derived from

Steps 1–5. Regarding the constraint (15b), the following cases
are possible.
B-1) or ( and

). In this case, the constraint (15b) is sat-
isfied and the current is optimal.
B-2) and . In

this case, it is not difficult to see that it is optimal to simply set
.

B-3) and
.

Subcases B-1 and B-2 are simple and dealt with in Step 6 of
the algorithm in Table I. Subcase B-3 is dealt with in Step 7. The
optimal strategy in Subcase B-3, as in Step 7 of the algorithm
in Table I, is to increase while keeping unchanged until

. In order to prove that this
strategy is optimal, the following three points are necessary and
sufficient.
1. It is optimal to increase .

2. if and .
3. At optimality, the increased , denoted as , satisfies

.
The first point states that it is optimal to increase as long

as . The second point infers that it is not optimal to de-
crease . The third point infers that is always smaller than
and therefore it is not optimal to increase at any time.

The first point follows from Lemma 3. For the second point,
assume that . It follows that all is used up, i.e.,

. Otherwise, the equality in

the constraint (15a) is not achieved for and the objective func-
tion in (11) can be increased by decreasing , which contra-
dicts Steps 1–5 of the algorithm in Table I. Given that
and , it can be proved that

. Otherwise, the power allocation can be proved
not optimal based on Lemma 2 because the objective function
in (11) is not maximized subject to the constraint (15a), which
contradicts Steps 1–5 of the algorithm in Table I. However, the
conclusion that contradicts Subcase B-3 in which

. Thus, the assumption that is
invalid. Since at the output of Steps 1–5 of the algo-
rithm in Table I, we have . For the third point, assume
that . Then it follows that

, which is not optimal. Therefore, at op-
timality of Subcase B-3.
C) Finally, we prove that found in Step 7 of the algorithm

in Table I for Subcase B-3 is optimal. The optimal for Case
B-3 is the solution to the following optimization problem

(35a)

(35b)

Using the definition that and
, the constraint in (35) is equal to

(36)
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As previously proved, in Case B-3, which means that
. Thus, equation (36) can be rewritten as

(37)

Therefore, the optimal satisfies

(38)

and the optimality of the water level found in Step 7 of the
algorithm in Table I is proved.
The proof of Theorem 3 is thereby complete.
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