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ABSTRACT Global Navigation Satellite Systems (GNSS) are crucial for applications that demand very
accurate positioning. Tensor-based time-delay estimation methods, such as CPD-GEVD, DoA/KRF, and
SECSI, combined with the GPS3 L1C signal, are capable of, significantly, mitigating the positioning
degradation caused by multipath components. However, even though these schemes require an estimated
model order, they assume that the number of multipath components is constant. In GNSS applications,
the number of multipath components is time-varying in dynamic scenarios. Thus, in this paper, we propose
a tensor-based framework with model order selection and high accuracy factor decomposition for time-
delay estimation in dynamic multipath scenarios. Our proposed approach exploits the estimates of the
model order for each slice by grouping the data tensor slices into sub-tensors to provide high accuracy
factor decomposition. We further enhance the proposed approach by incorporating the tensor-basedMultiple
Denoising (MuDe).

INDEX TERMS Global navigation satellite systems (GNSS), global positioning system (GPS), GPS3,
time-delay estimation (TDE), multipath components, model order selection (MOS).

I. INTRODUCTION
As Global Navigation Satellite Systems (GNSS) become
more ubiquitous and this technology proved to be essential
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for applications such as civilian aviation, autonomous driv-
ing, defense, and timing and synchronization of critical net-
works. GNSS receivers require line of sight (LOS) signals
from at least four satellites to estimate their position on
the Earth’s surface. Additionally, besides the LOS compo-
nent, non-LOS (NLOS) multipath components are received
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due to the reflections on trees, poles, lamps, and buildings.
Therefore, the superposition of the LOS and NLOSmultipath
components degrades the time-delay estimation (TDE) and,
consequently, the positioning estimation.

State-of-the-art GNSS receivers equipped with a single
antenna are in general remarkably sensitive to the effect of
multipath components [1]–[3]. Thus, multi-antenna GNSS
receivers became the focus of research on resilient position-
ing withstanding not only multipath but also interference and
spoofing. In addition to beamforming approaches [4], [5],
multi-dimensional parameter estimation approaches [6], [7],
and other approaches as those proposed in [8] and [9],
tensor-based decomposition methods showed significant
improvements over matrix-based decomposition methods.
A tensor-based decomposition features uniqueness, improves
the identifiability of the parameters, and the tensor structure
permits efficient denoising of the received signal. Therefore,
tensor-based multipath mitigation methods, combined with
antenna arrays, have been proposed as an alternative to single
antenna and matrix-based techniques.

In [10], the authors propose a so-called Tensor-based
Eigenfilter using the Higher-Order Singular Vector Decom-
position (HOSVD) combined with Forward-Backward Aver-
aging (FBA) [11], Spatial Smoothing (SPS) [12], [13], and
a bank of correlators to mitigate multipath and to improve
time-delay estimation of the LOS signal. In [14] a three step
approach based on direction of arrival (DoA) estimation,
the Khatri-Rao factorization (KRF), and a bank of correla-
tors was proposed. This DoA/KRF method [14] outperforms
traditional matrix-based decomposition methods. However,
the performance of this approach depends on estimates of
the DoAs of the received signals to construct the respective
loading matrices of the signal tensor decomposition. Further-
more, [14] assumes a static environment, thus it cannot be
applied to scenarios where the model order changes over-
time. In [15], the authors proposed the Canonical Polyadic
Decomposition by a Generalized Eigenvalue Decomposition
(CPD-GEVD). Although the CPD-GEVD showed robustness
in the presence of multipath components and array imperfec-
tions, it assumes a constant model order between data epochs.
In [16], the tensor-based methods proposed in [10], [14], [15]
were extended to third-generation GPS (GPS3) signals, since
GPS3 is more robust against multipath components in com-
parison to the signals of the second-generation GPS (GPS2)
due to its Time Multiplexed Binary Offset Carrier (TMBOC)
modulation [17]–[19]. In [20], the authors showed that the
SEmi-algebraic framework for computing an approximate
CP decomposition via SimultaneousMatrix Diagonalizations
(SECSI) [21] can be applied to GPS2 and GPS3 signals
and antenna array-based receivers using GPS3 and SECSI
outperform antenna array receivers using GPS2 and SECSI.
This underlines the superior multipath performance of the
new GPS3 signals. Additionally, [20] showed that the SECSI
method is more robust in the presence of strongly correlated
signals than the CPD-GEVD method while on the other hand
being computationally more expensive.

The Tensor-based Eigenfilter [10] does not require a pre-
vious model order selection (MOS), but achieves lower
accuracy compared to the methods proposed in [15], [20].
However, the CPD-based techniques, introduced in [15], [20],
require an estimate of the tensor model order to enable tensor
factorization. Thus, even though [15], [20] have improved the
performance of TDE in presence of highly correlated mul-
tipath, these methods assume a known and constant model
order. Recently, in [22], the authors proposed the (Lr ,Lr , 1)-
GEVD approach to perform multi-linear rank-(Lr ,Lr , 1)
decomposition by clustering NLOS components and obtain-
ing the LOS component. Meanwhile, in [23], the authors
proposed a tensor-based subspace tracking framework to
keep track and update the tensor signal subspace. However,
similarly to previous tensor-based methods, [22] and [23]
assume that the model order is constant between data epochs.
Hence, MOS schemes need to be included and assessed for
the application of tensor-based methods for GNSS in order to
achieve highly accurate and robust TDE of the LOS signal in
case correlated multipath signals are received.

The literature on MOS for matrix data models is quite
extensive. The following approaches can be considered the
state-of-the art of matrix-based MOS: 1-D Akaike’s Infor-
mation Criterion (AIC) [24], 1-D Minimum Description
Length (MDL) [24], EFT [25], Modified EFT (M-EFT) [24],
RADOI [26], and the subspace-based ESTER [27]. Also,
tensor-based MOS was proposed as well, such as R-D
AIC [28], R-D MDL [28], and R-D EFT [24]. Even though
MOS methods are crucial to mitigate multipath components,
the literature hardly investigates MOS methods for GNSS
applications. For example, in [29], the authors apply MDL
with antenna arrays to estimate GNSS NLOS components,
thus showing that the model order estimation depends on
the carrier-to-noise density ratio (C/N0) of the received sig-
nals. Furthermore, in [30], a multipath detection algorithm
is developed based on a one-way analysis of the variance
(ANOVA). However, in [30], the authors assume the DOA
of the LOS signal to be known.

In this paper, we propose a tensor-based framework with
model order selection and high accuracy factor decompo-
sition for TDE in dynamic multipath scenarios for GNSS.
This new approach includes the estimation of the model order
for each slice of the data tensor and subsequent grouping
of the data tensor into sub-tensors. To successively apply
SPS, denoising, and reconstruction of the noisy data, the pro-
posed high accuracy tensor-based decomposition, uses the
respective sub-tensors combined to the tensor-based MUlti-
ple DEnoising (MuDe) [31]. Therefore, the proposed frame-
work is composed of four steps, namely, estimation of the
number of multipath components in slow and fast dynamic
multipath scenarios, further mitigation of the multipath effect
by employing the tensor-based MuDe, separation of the
sources by using our proposed high accuracy tensor-based
decomposition exploiting the different model orders of the
slices of the data tensor, and estimation of the time-delay of
the signal components.
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This paper has six sections, including this introduction.
Section II introduces the notation utilized in the paper.
In Section III, the data model assuming multipath compo-
nents and the dynamic model order is presented. Section IV
describes the proposed tensor-based framework with model
order selection and multiple denoising for dynamic multipath
components. Section V presents and discusses simulation
results for the proposed framework. Section VI draws the
conclusions.

II. NOTATION
In this section, we introduce the mathematical notation used
in this paper. Scalars are represented by italic letters (a, b),
vectors by lowercase bold letters (a, b), matrices by uppercase
bold letters (A,B), and tensors by uppercase bold calligraphic
letters (A, B). The superscripts T, ∗, H, −1, and + denote
the transpose, conjugate, conjugate transpose (Hermitian),
the inverse of a matrix, and pseudo-inverse of a matrix,
respectively.

Additionally, for a vector a ∈ CN , the nth element is
denoted as an. Moreover, for a matrix A ∈ CM×N , the ele-
ment in the mth row and nth column is denoted by am,n, its
mth row is denoted by Am,·, and its nth column is denoted
by A·,n. Furthermore, the vec{·} operator reshapes a matrix
into a vector by stacking all elements in a column vector. The
operators � and ◦ denote the Khatri-Rao product and the outer
product, respectively.

The operator cond{·} computes the condition number of
a matrix. The smaller is the condition number, the more is
stable the inverse, of the said matrix [32]. The Frobenius
norm of a matrix A is denoted by ||A||F whereas ||A·,n||2
is the vector norm. For a matrix A ∈ CM×N with M < N ,
the diag{·} operator extracts the diagonal of a matrix.

The n-mode unfolding of tensor A is denoted as [A](n),
which is the matrix form of A obtained by varying the nth
index along the rows and stacking all other indices along the
columns of [A](n). The n-mode product between tensor A
and a matrix B is represented as A ×n B. The N th order
IN ,L ∈ RL×...L is defined as the N -way identity tensor of
size L, whose elements are equal to one if the N indices are
equal and zero, otherwise.

III. DATA MODEL
This section firstly introduces the scenario considered in this
work in Subsection III-A. Subsection III-B describes how
the signal tensor is constructed. Finally, in Subsection III-C,
the post-correlation datamodel is defined for a GPS L1C pilot
signal [17].

A. SCENARIO
We consider a GNSS receiver equipped with an antenna
array with M elements. We assume that for the received
signals of d = 1, . . . ,D satellites, the LOS signal of the
d th satellite is superimposed with Ld(k) − 1 NLOS multipath
components. The observations are collected duringK periods
(or epochs) each with N samples, where k = 1, . . . ,K and

n = 1, . . . ,N . Moreover, the total number of received signal
components is L(k) =

∑D
d=1 Ld(k) , where `(k) = 1, . . . ,L(k)

and `d (k) = 1, . . . ,Ld (k) are the `th and `d th component
at the kth epoch. Furthermore, we assume that τ (d)1 is the
time-delay of the LOS component of the d th satellite, while
τ
(d)
2 , . . . , τ

(d)
Ld(k)

are the time-delays of the (Ld (k) − 1) non-
LOS (NLOS) components. Each satellite broadcasts the L1C
pilot signal with carrier frequency fc = 1575.42 MHz. The
received signals are down-converted to baseband and sampled
at a sampling rate of fs = 2 B, where B is the one-sided signal
bandwidth.

B. PRE-CORRELATION DATA MODEL
As shown in [15], a tensor model can be used to express
the received complex baseband signal at the output of the M
antennas of an antenna array as

X = I3,L ×1 0̃
T
×2 C̃T

×3 Ã+N (1)

where

0̃T
= [γ 1, . . . , γ L (k)] ∈ CK×L(k) (2)

collects the complex amplitudes of each signal component
during K epochs with

γ ` ∈ CK×1
= [γ1, . . . , γK ]T (3)

including the complex amplitudes at each epoch. The matrix

C̃ =
[
c1[τ

(1)
1 ], . . . , c1[τ

(1)
`1(k)

], . . . ,

cD[τ
(D)
`d(k)

], . . . , cD[τ
(D)
Ld(k)

]
]
∈ CN×L(k) (4)

comprises the sampled L1C pilot code sequence with
cd [τ

(d)
`d(k)

] ∈ CN×1 collecting the periodically repeated pseudo

random binary sequences (PRBSs) with time-delay τ (d)`d(k)
for

each satellite and the respective multipath components. Then,
the matrix

Ã = [a(φ1), . . . , a(φL(k) )] ∈ CM×L(k) (5)

collects the array responses a(φ`(k) ) ∈ CM×1 with azimuth
angle φ`(k) of `(k) components at the kth epoch. Moreover,
N is a white Gaussian noise tensor.
The tensor in (1) is composed of three dimensions, the first

dimension of size K is related to each epoch, the second
dimension of size N is associated with the collected samples
in each epoch, and the third dimension of sizeM corresponds
to the spatial diversity of the receive antenna array.

C. POST-CORRELATION DATA MODEL
To separate the Ld (k) LOS signals and NLOS multipath com-
ponents of the d th satellite, the GNSS receiver uses a bank
of correlators with respect to each satellite. Thus, the GNSS
receiver applies D banks of correlators on the received sig-
nal, obtaining D output signals. We define the d th bank of
correlators with Q ‘‘taps’’ as

Qd =
[
cd [τ1], . . . , cd [τQ]

]
∈ CN×Q, (6)
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FIGURE 1. Block diagram for the proposed Framework.

with τ1 < . . . < τQ and the qth delayed reference sequence
cd [τq] corresponding to the qth tap. The thin SVD ofQd with

Qd = U(d)6VH (7)

provides the bank of correlators

Q(d)
ω = Qd (6VH)−1 (8)

which performs cross-correlation (compression) preserving
the noise statistics [33]. Therefore, Q(d)

ω suppresses other
satellites while preserving the noise statistics. When com-
paring Q(d)

ω to the bank of correlators Qd , we observe that
Qd provides a sampled cross-correlation function of the
bank of correlators with the received LOS component. Thus,
according to [10], we can correlate the received signal tensor
X ∈ CK×N×M withQ(d)

ω to separate the d th satellite from all
other received satellites and we obtain

Y (d)

= X ×2 (Q(d)
ω )T

= I3,Ld ×1 0
T
×2 (CQ(d)

ω )T ×3 A+N ×2 (Q(d)
ω )T +M

= I3,Ld ×1 0
T
×2 (CQ(d)

ω )T ×3 A+N ω +M
≈ I3,Ld ×1 0

T
×2 (CQ(d)

ω )T ×3 A+N ω, (9)

where I3,Ld(k)
∈ RLd(k)×Ld(k)×Ld(k) is the identity tensor,

0T
∈ CK×Ld(k) collects the complex amplitudes of the

Ld (k) signal components of satellite d obtained from matrix
0̃T, (CQ(d)

ω )T ∈ RQ×Ld(k) holds the cross-correlation val-
ues of the LOS and NLOS components for satellite d , and
A ∈ CM×Ld(k) comprises the Ld (k) array responses of satellite
d excluded from Ã. In the following we assume that A does
not vary significantly over K epochs. N ω ∈ CK×Q×M

denotes a white Gaussian noise tensor after correlation.
The tensor M is the multiple access interference (cross-
correlation) of the other satellites and their respective multi-
path components. In general,M is negligible in comparison
to other terms, since signals are more or less decorrelated.

IV. PROPOSED FRAMEWORK
As illustrated in Figure 1, the proposed framework can
be divided into six steps. In Subsection IV-A we describe
block (1). In this step, we receive the post-correlated signal
and executes the M-EFT method to estimate the number
of multipath components for the d th satellite in dynamic
environments. Additionally, in Subsection IV-B, we describe
an alternative method for static scenarios, in which we use
the RADOI method to estimate the number of multipath
components. Next, in Subsection IV-A, we describe block (2)
of the framework. In this step, we use the post-correlation

tensor Y and the estimated model order Ld (k) to generate
sub-tensors. In Subsection IV-C, we detail the denoising step
in the block (3) by applying the MuDe technique to filter the
sub-tensors. Then, block (4), as described in Subsection IV-D,
uses the estimated grouped model order and the sub-tensors,
filtered by MuDe, to perform the Mode 1 HOSVD SECSI
with left-hand matrix (Mode 1 HOSVD SECSI) method to
estimate the factor matrices of each sub-tensor. Afterward,
as described in Subsection IV-E, block (5) describes how the
factor matrices of each sub-tensor are normalized and used
to extract the LOS components of all sub-tensors. Finally,
as described in Subsection IV-F, we perform TDE of the LOS
component of each sub-tensor, as illustrated in the block (6)
of the framework given in Figure 1.

A. MODEL ORDER SELECTION FOR DYNAMIC
ENVIRONMENTS
To compute the model order applying the Modified Expo-
nential Fitting Test (M-EFT) [24], we use the covariance
matrix R̂[k] obtained from each epoch of the tensor Y (d) as
defined in (9). Therefore, we firstly compute the eigenvalue
decomposition (EVD) to obtain

R̂[k] =
1
Q
Y (d)[k]Y (d)[k]H (10)

= U3UH
+ Rqq[k], (11)

where R̂[k] ∈ CM×M is a Hermitian matrix, U =

[u1 u2 . . . uM ] ∈ CM×M is a unitary matrix containing
the eigenvectors, 3 = diag{λ1, . . . , λM } ∈ CM×M is a
diagonal matrix including the the sorted eigenvalues λi, such
that λ1 > λ2 > · · · > λM , and the covariance matrix
Rqq[k] ∈ CM×M of the bank of correlators. Moreover,
we define U(s)

= [u1 u2 . . . uP] ∈ CM×P as the truncated
matrix composed of P eigenvectors of U corresponding to
the P largest eigenvalues of 3. Therefore, in case that P =
Ld(k) (k), the dominant eigenvectors U(s)

∈ CM×Ld(k) (k) and
the column space of the steering matrix A span the same
subspace.

Furthermore, the M-EFT can adopt an exponential profile
to approximate the Wishart profile of the noise eigenval-
ues and consequently enabling their prediction. The M-EFT
estimates the model order by computing the distance from
λM−P, calculated from the measurements to the predicted
eigenvalue λ̂M−P, where P is a possible number of noise
eigenvalues. Furthermore, the M-EFT method computes the
threshold coefficients ηP, and then estimates the model order.
SinceM ,Q, and the probability of false alarmPfa, do not vary,
ηP is computed previously and stored. To compute theM-EFT
we refer to [24], [34].
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FIGURE 2. Sub-tensors obtained after grouping the epochs with same
estimated model order.

Then, once we have the estimated model order L̂d(k) (k) for
each epoch, we group the epochs with the same estimated
model order, as illustrated in Figure 2(a) and 2(b). Moreover,
we create a vector that contains the grouped model order
L̂d(k) (k)

(t)
with respect to the epochs and for t = 1, . . . ,T

sub-tensors. Therefore, we create Ỹ (t)
sub-tensors which will

be used to perform TDE. For instance, if we estimate three
different model orders L̂d1 (k) = 2 and L̂d2 (k) = 3 we
concatenate the epochs with the same model order to create
a new tensor. Afterwards, we can use the sub-tensors to
perform TDE.

B. MODEL ORDER SELECTION FOR STATIC
ENVIRONMENTS
In order to decompose the tensor Y (d) into factor matrices
for TDE, first, the number of multipath components of the
d th satellite Ld(k) have to be estimated. To perform MOS in
static environments we propose to apply RADOI [26] for
which the covariance matrix R̂yy obtained from the third-
mode unfolding of tensor [Y (d)](3) as defined in (9) is used to
compute an EVD. Thus, we obtain

R̂yy =
1
KQ

[Y (d)](3)[Y (d)](3)]H (12)

= Ũ3̃ŨH
+ RR

qq, (13)

where R̂yy ∈ CM×M is a Hermitian matrix, ũ =

[ũ1 ũ2 . . . ũM ] ∈ CM×M is an unitary matrix containing
the eigenvectors, 3̃ = diag{λ̃1, . . . , λ̃M } ∈ CM×M is a
diagonal matrix collecting the sorted eigenvalues λ̃i, such
that λ̃1 > λ̃2 > · · · > λ̃M , and the covariance matrix
RR
qq ∈ CM×M of the bank of correlators. Moreover, we define

Ũ(s)
= [ũ1 ũ2 . . . ũP] ∈ CM×P as the truncated matrix

composed of P eigenvectors of Ũ corresponding to the P
largest eigenvalues of 3̃. Therefore, as discussed above for
the EFT, in case that P = Ld(k) , the dominant eigenvectors
U(s)R

∈ CM×Ld(k) and the column space of the steering matrix
A span the same subspace.

C. TENSOR-BASED MULTIPLE DENOISING
Since TDE performance is sensitive to signal-to-noise ratio
(SNR) and degrades in noisy scenarios, we include a
denoising step. Therefore, we propose to use the MuDe
approach [31], which is a pre-processing technique to denoise
tensor-like data. MuDe combines the principle of Spatial
Smoothing (SPS) [12] with successive SVD-based low-rank

approximations of the output signals for sub-arrays of varying
size in each spatial dimension of the obtained signal tensor
and, then, rebuilds the the different sub-arrays into a tensor.

D. ESTIMATION OF FACTOR MATRICES
Originally, the state-of-the-art SECSI method [21] offers a
trade-off between performance and reliability. The authors
in [21] prove that for a 3-way tensor, one can construct six
distinct diagonalization problems by computing the slices of
the core tensor. Then, one can use each core tensor to compute
the right-hand and left-hand matrices of each slice. Follow-
ing the solution of the six distinct diagonalization problems,
the authors in [21] propose to analyze the estimates and, then,
select the estimate with the lowest error. However, to reduce
processing time, [20] proposes to utilize only the right-hand
matrix obtained from the first-mode slice of the core tensor.
Moreover, in [20] it was shown that the SECSI method
combined with HOSVD (HOSVD SECSI) introduced in [21]
presents a higher complexity than the CPD-GEVD. However,
despite the higher complexity of the HOSVD SECSI, this
method shows better performance in scenarios with highly
correlated signals. Consequently, the HOSVDSECSImethod
is more reliable in more demanding scenarios. However,
based on simulations, we show that, by applying different
tensor modes, we can also achieve better performance in
dynamic situations.

Since we create a sub-tensor for the tensor epochs with
the same model order, in some situations, we obtain a model
order greater than the number of epochs in a given sub-tensor.
Since the method used in [20] is no longer suitable for a
dynamic scenario, we propose to apply a different tensor
mode to perform factor matrix estimation. Hence, in several
simulations, the left-hand matrix obtained from the third-
mode slice of the core tensor (Mode 1 HOSVD SECSI)S(d)(t)

proved to be a suitable alternative. Finally, to compute the
Mode 1 HOSVD SECSI we firstly compute the HOSVD low-
rank approximation of the sub-tensors Y (d)(t) obtained from
grouping the tensor Y (d) epochs according to their model
order.

Y (d)(t)
≈ S(d)(t)

×1 U
(d)(t)

1 ×1 U
(d)(t)

2 ×3 U
(d)(t)

3 , (14)

where the superscript (t) indicates the tth sub-tensor, U(d)(t)

1 ∈

CK×Ld(k) , U(d)(t)

2 ∈ CQ×Ld(k) , and U(d)(t)

3 ∈ CM×Ld(k) , are
the truncated singular matrices related to the tth sub-tensor.
Moreover, to compute the singular matrices and the core
tensor, the SVD is derived for each of the unfolding of the
tensor for each dimension. Thus, we can write[

Y (d)
](t)
(1)
= U(d)(t)

1 S(d)
(t)

1 VH(d)(t)

1 , (15)[
Y (d)

](t)
(2)
= U(d)(t)

2 S(d)
(t)

2 VH(d)(t)

2 , (16)[
Y (d)

](t)
(3)
= U(d)(t)

3 S(d)
(t)

3 VH(d)(t)

3 , (17)
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where U(d)(t)
i , S(d)

(t)

i , and VH(d)(t)
i are the left singular vector

matrix, singular value matrix, and right singular vector matrix
for the ith dimension, respectively. Consider that the left
singular vector matrices can be sequentially computed as
follows: [

Y (d)
](t)
(1)
= U(d)(t)

1 S(d)
(t)

1 VH(t)
1 , (18)[

Y (d)(t)
×1 U

H(t)
1

]
(2)
= U(d)(t)

2 S(d)
(t)

2 VH(t)
2 , (19)[

Y (d)(t)
×1 U

H(t)
1 ×2 U

H(t)
2

]
(3)
= U(d)(t)

3 S(d)
(t)

3 VH(d)(t)

3 . (20)

Next, let us consider the first-mode unfolding of Y (d) and
use the representation in (9) and (14), then, we obtain

U(d)(t)

1 [S](t)(1)(U
(d)(t)

2 ⊗ U(d)(t)

3 )T

= 0T(t)[I3,L
](t)
(1)((CQ

(d)(t)
ω )T ⊗ A(t))T. (21)

Hence, the subspace spanned by the columns of U(d)(t)

1 ,

U(d)(t)

2 , and U(d)(t)

3 and the subspace spanned by the columns
of 0(t)T, (CQ(d)(t)

ω )T, and A(t) are identical. Consequently,
there exists a set of non-singular transform matrices T(t)

1 ∈

CLd(k)×Ld(k) , T(t)
2 ∈ CLd(k)×Ld(k) , and T(t)

3 ∈ CLd(k)×Ld(k) which
represent the loading matrices of the CPD of the core tensor
of the HOSVD given in (14). Thus, the tensor S can be
represented as

S(d)(t)
= I (t)

3,Ld(k)
×1 T

(t)
1 ×2 T

(t)
2 ×3 T

(t)
3 . (22)

The transform matrices T(t)
1 ∈ CLd(k)×Ld(k) , T(t)

2 ∈

CLd(k)×Ld(k) , and T(t)
3 ∈ CLd(k)×Ld(k) represent the load-

ing matrices of the CPD of the core tensor S(d)(t)
∈

CLd(k)×Ld(k)×Ld(k) in (22). In theory, the CPD can be directly
applied to Y (d), to extract the factor matrices. However,
as demonstrated in [10], by directly computing the factor
matrices using Alternating Least Squares (ALS), there are
convergence problems, resulting into poor performance in
terms of TDE. Therefore, to perform the CPD, it is sufficient
to compute the loading matrices T(t)

1 , T(t)
2 , and T(t)

3 , to obtain
the factor matrices

U(d)(t)

1 T(t)
1 = 0

(t)T, (23)

U(d)(t)

2 T(t)
2 =

(
CQ(d)(t)

ω

)T
, (24)

U(d)(t)

3 T(t)
3 = A(t). (25)

As a consequence of the symmetry of the SECSI problem,
we can build 6 Simultaneous Matrix Diagonalization (SMD)
problems for a three-way model [21]. However, as shown
by [20], without loss of generality, we can only use one
mode of the compressed core tensor S(d)(t) to compute the
right-hand and left-hand matrices utilized in the SMD step
described in [21]. In [20], the authors show that the SECSI
third-mode, of a given compressed core tensor, in the GNSS
case, yields the best estimation performance in static scenar-
ios. However, after performing several numerical simulations,

we now select the left-hand matrix of the first mode of the
compressed core tensor S(d)(t) . Therefore, the ith slice of the
first-mode of tensor S(d)(t) is selected to compute the left-
hand matrix

S(t)1,i =
[(

S(d)(t)
×1 U

(d)(t)

1

)
×1 eTi

]
= T(t)

2 diag{0(t)H
·,i}T

(t)
3

T
, (26)

where eTi is a vector with all zeros except in the ith position.
Next, we select the slice of the tensor S(d)(t) with the smallest
condition number

S(d)
(t)

1,p = T(d)(t)

2 diag{0(d)(t)H
·,p}(T

(d)(t)

3 )T, (27)

where p is an arbitrary index between one and the total
number of slices to be diagonalized and defines the slice of
the tensor S t with the smallest condition number

p = argmin
i

cond{S(d)
(t)

1,i }, (28)

where cond{·} computes the condition number of a matrix.
The smaller the condition number of a matrix, the more stable
is its inversion. Furthermore, we obtain the left-hand matrices
S(t),lhs1,i by multiplying S1,i by S1,p on the left-hand side

S(d),lhs
(t)

1,i =

(
S(d)

(t)

1,p

−1
S(d)

(t)

1,i

)T

= T(d)(t)

3 0(d)(t)HT(d)(t)

3

−1
. (29)

Since p is fixed, we can i in (29) obtainingN−1 equations,
since i 6= p. Our goal is to find T̂(d)(t)

3 that simultaneously
diagonalizes the N − 1 equations. We refer here to the tech-
niques in [35] and [36].
Since in the noiseless case, according to (9), the third-mode

unfolding exposes the factor matrix A(t), we can write

[Y (d)(t) ]T(3) =
[
0(t)
�

(
CQ(d)

ω

)(t)]
A(t). (30)

Using U(d)(t)

3 from (14) and T̂(t)
3 from the diagonalization

step we obtain

U(d)(t)

3 T̂(t)
3 = Â(t). (31)

Afterwards, we multiply (30) by the pseudo-inverse of the
estimated Â(t) from the left-hand side to obtain

F(t)
= [Y (d)(t) ]T(3)(Â

(t))+T

=

[
0(t)
�

(
CQ(d)

ω

)(t)]
A(t)(Â(t))+T

≈

[
0(t)
�

(
CQ(d)

ω

)(t)]
∈ CKM×Ld(k) . (32)

Then, the factor matrices (CQ(d)
ω

(t)
)T and 0(t) can be esti-

mated from (32) by applying the Least Squares Khatri-Rao
Factorization (LSKRF) [37].
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E. LOS SELECTION
Subsequently, to estimating all the parameters of the received
signal, we need to separate the LOS and NLOS signal param-
eters. In this subsection, we describe the fifth element of the
framework. This element performs the LOS selection based
on the estimated factor matrices. Therefore, as described
in [20], to perform the LOS selection the estimated factor
matrices (ĈQ(d)

ω ))(t)
T
, Â(t), and 0̂(t) are normalized to unit

norm for the `(t)d th component and can be given as

( ˆ̄CQ(d)
ω )(t)

T

·,`
(t)
d

= (ĈQ(d)
ω )(t)

T

·,`
(t)
d

/||(ĈQ(d)
ω )(t)

T

·,`
(t)
d

||F , (33)

ˆ̄A(t)

·,`
(t)
d

= Â(t)

·,`
(t)
d

/||Â(t)

·,`
(t)
d

||F , (34)

ˆ̄0
(t)

·,`
(t)
d

= 0̂
(t)

·,`
(t)
d

/||0̂
(t)

·,`
(t)
d

||F . (35)

Next, with the normalized factor matrices, we construct the
tensor G(t)

`
(t)
d

for the `(t)d th normalized component of the esti-

mated factor matrices

G(t)

`
(t)
d

=
ˆ̄0
(t)

·,`
(t)
d

◦ ( ˆ̄CQ(d)
ω )(t)

T

·,`
(t)
d

◦
ˆ̄A(t)

·,`
(t)
d

, (36)

where G(t)

`
(t)
d

∈ CK×Q×M . Then, we store the tensor G(t)

`
(t)
d

corresponding to the `(t)d th component in a matrix

G(t)

·,`
(t)
d

= vec{G(t)

`
(t)
d

}, (37)

where G(t)
∈ CKQM×Ld , and vec{G(t)

`
(t)
d

} vectorize the ten-

sor G(t)

`
(t)
d

. Thus, we can compute the tensor amplitudes by

multiplying the pseudoinverse of G(t) by the vec{Ỹ (d)(t)
} and

we obtain

γ (t)
= G(t)+ vec{Ỹ (d)(t)

}. (38)

Assuming that the received signal component with the largest
power corresponds to the LOS signal, we select the respective
column of the estimated ( ˆ̄CQ(d)

ω )(t)
T
with

ˆ̀d
(t)
= arg max

`
(t)
d =1,...,L

(t)
d

|γ
(t)

`
(t)
d ,.
|
2. (39)

F. TIME-DELAY ESTIMATION (TDE)
Once we have selected the LOS component, in this Sub-
section, we describe the sixth element of the framework by
describing the TDE process. Therefore, we use the sLOS from
the third element to select the LOS component from the
estimated ( ˆ̄CQ(d)

ω )(t)
T
and multiply it by 6VH from the thin

SVD of Qd

q =
[
( ˆ̄CQ(d)

ω )(t)
T

·,sLOS6VH
]T
. (40)

where q contains the cross-correlation values at each tap
of the correlator bank. Then, as shown in [10], [14], [15],
[20], [38], [39], the resulting vector q is interpolated using a
simple cubic spline interpolation. Thus, by using the resulting
interpolated vector, we can derive the cost function F(κ) [20],

which is the cross-correlation function with the received LOS
signal. Finally, we use this cost function to estimate the time-
delay of the LOS signal by solving

τ̂ (d)
(t)
LOS = argmax

κ
F(κ). (41)

V. RESULTS
Following [16], we first consider a static scenario that
consists of a left centro-hermitian uniform linear array
(ULA) with M = 8 elements and half-wavelength 1 = λ/2
spacing. The L1C pilot channel is transmitted by the
satellites with PRS = 3, 4, 17 with a carrier frequency
fs = 1575.42 MHz. The simulations consider a GPS L1C
pilot signal with a period t3rd = 10 ms and with a band-
width B = 12.276 MHz. The L1C pilot code samples are
collected every kth epoch during K = 30 epochs with each
epoch having a duration of 10 ms [16] and with a sampling
frequency f = 2B MHz. Therefore, N = 245520 sam-
ples are collected for the L1C pilot code per epoch. The
carrier-to-noise ratio is C/N0 = 48 dB-Hz, resulting in
a pre-correlation signal-to-noise ratio SNRpre = C/N0 −

10 log10(2B) ≈ −25.10 dB for GPS3. Given the processing
gainG = 10 log10(Bt) ≈ 50.9 dB for GPS3. Hence, the post-
correlation signal-to-noise ratio SNRpost = SNRpre + G ≈
25 dB. Moreover, the signal-to-multipath ratio SMR1 = 5 dB
for Ld = 2. In case Ld = 3 the SMR1 = 5 dB for the first
NLOS signal, and a SMR2 = 10 dB for the second NLOS
signal. Besides the simulation considering exact knowledge
of the array response (perfect array), we added errors in the
antenna array geometry to distort the real array response with
respect to the known response by displacing the antennas in x
and y positions according to a normal distribution∼N (0, σ 2).
The standard deviation is computed in terms of the probability
p = P(e > λ/2), where the error exceeds a half wavelength.
We fix the relative time-delay 1τ at 0.5Tc while varying the
error probability p from 10−6 to 10−1. Moreover, we consider
a probability of false alarm Pfa = 10−3.

Additionally, we performed simulations considering a
dynamic scenario with one satellite with PRBS = 17. In this
dynamic scenario, we vary the DoA of the LOS component
for each epoch and the number of LOS and NLOS com-
ponents within the tensor Y . We define a DoA difference
between epochs of 2◦.Moreover, we define the first 15 epochs
have Ld = 5 while the last fifteen collected epochs have
Ld = 6. Since we consider a dynamic scenario, we target
a lower probability of false alarm Pfa = 10−6.

Since [20] showed that simulations potentially have
outliers in case the signals are strongly correlated, we,
therefore, performed 1000 Monte Carlo (MC) simulations
to compare all approaches in terms of the Root Median-
Squared Error (RMDSE) of the time-delay of the LOS com-
ponent. The TDE performance of the proposed tensor-based
methods is compared to the TDE performance in the case
A and 0 are considered known, which can be considered
as a lower bound for TDE performance for the proposed
methods.
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TABLE 1. Probability of Detection for MOS with M = 8 antennas. In both
cases code samples are collected during K = 30 epochs, and N = 245520.

A. PROBABILITY OF DETECTION CONSIDERING
A STATIC SCENARIO
In this section, we present the probability of detection (PoD)
for simulations considering an array of antennas for which the
array response is known. We compute the PoD for a relative
delay 1τ = 0.5Tc. In TABLE 1, we show the PoD for static
scenarios with d = 1 satellite with Ld = 3 components and
d = 3 satellites with Ld = 3 components. Note that, in the
simplest scenario, d = 1 and Ld = 3, only AIC presents
a PoD below 99%. However, observe that if we add more
satellites to the simulations, the EFT, AIC, and MDL-based
methods do not correctly estimate the model order. However,
note that both RADOI and ESTERmethods have a consistent
performance achieving the same PoD for all simulations.

TABLE 2. Probability of detection for MOS methods with an imperfect
array with M = 8 antennas. In both cases code samples are collected
during K = 30 epochs with N = 245520.

1) PoD CONSIDERING AN ARRAY WITH ERRORS
AND A STATIC SCENARIO
In this section we consider an antenna array with errors in
its array response model (imperfect array) with d = 1 and
Ld = 2, d = 1 and Ld = 3 impinging signals, and a fixed rel-
ative time-delay1τ = 0.5Tc. In TABLE 2, we show the PoD
for theMOSmethods for d = 1 satellite with Ld = 3 imping-
ing signals and d = 3 satellite with Ld = 3 impinging signals.
Note that the ESTER method shows an inferior performance
when we add a second NLOS component to the simula-
tion. Observe that in case the array response model of the
antenna array includes errors (e.g. the antenna elements of the
array experienced displacement errors), the eigenvalue-based
methods EFT, M-EFT, MDL, R-D AIC, R-D MDL, R-D
EFET, and RADOI, are insensitive to these errors in the array

response model. However, since the ESTER method assumes
the matrix A has a Vandermonde structure, errors in the
array response model cause that the matrix A has a different
structure than Vandermonde. Therefore, the ESTER shows to
be sensitive to array imperfections.Moreover, we can observe
that RADOI is the most accurate MOS method in a static
environment.

B. TDE CONSIDERING A STATIC SCENARIO
In this section, we present simulation results of the various
methods for the GPS3 L1C signal. We assess the case Ld = 3
and d = 3. Additionally, preceding the time-delay estima-
tion, we apply the RADOI method since other matrix and
tensor-based methods, do not provide reliable estimates.

FIGURE 3. MOS techniques and proposed Mode 1 HOSVD SECSI with
left-hand matrix method simulation with M = 8 antennas. In both cases
code samples are collected during K = 30 epochs, N = 245520, and
Ld = 3 and d = 3.

In Figure 3 we show the TDE error for matrix-based MOS
methods in a static scenario. Note that the results obtained by
RADOI present similar estimates to the known model order
case. Moreover, in the case signals are weakly correlated,
e. g., 1τ > 0.2Tc, the RADOI method provides precise
model order estimates. Note that in a static scenario with
constant model order, the MOS accuracy seems irrelevant
since the TDE performance is similar. The larger power of the
LOS component after signal correlation explains the similar
TDE. However, the Mode 1 HOSVD SECSI shows higher
estimation errors when combined with the AIC since AIC
provides an estimated model order of Ld > 5. Thus, to keep
the TDE error as low as possible, it is essential to use a reliable
MOS scheme.

C. PROBABILITY OF DETECTION CONSIDERING
A DYNAMIC SCENARIO
In this section, we present the PoD computed considering a
dynamic scenario and a perfectly aligned array of antennas
with no errors in the array response model. In dynamic sce-
narios, the number of LOS and NLOS components within the
tensorY (d) are changing. When applying matrix-based MOS
methods, we performed the MOS for each epoch and individ-
ually computed the PoD. Moreover, in a dynamic scenario,
we use the pre-processing methods FBA, SPS, and their com-
binations to attempt to improve the model order estimation
accuracy in case of highly correlated signal components.

In Figure 4 we show the PoD for the M-EFT method for
1τ = 0.1 Tc and K = 30. Note that the M-EFT method
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FIGURE 4. PoD of EFT for 1τ = 0.1 Tc in a dynamic scenario with an
perfect array with M = 8 antennas. Code samples are collected during
K = 30 epochs with N = 245520.

FIGURE 5. M eigenvalues and M predicted eigenvalues at 1τ = 0.1 Tc of
the first epoch of tensor Y(d ) and Ld = 5.

fails to estimate the model order but applying FBA and SPS,
M-EFT shows a PoD above 20% when Ld = 5 and above
50% when Ld = 6.

In Figure 5, we show the M eigenvalues and the M pre-
dicted eigenvalues, at 1τ = 0.1 Tc. The eigenvalues are
normalized with respect to the strongest eigenvalue (LOS
eigenvalue). In Figure 5 one can observe, that FBA and SPS
add some gain to the NLOS components. However, since
the NLOS components’ power is too small, we obtain low
NLOS eigenvalues. Note that the 3rd, 4th, and 5th eigenvalues
are as weak as the noise eigenvalues, i.e., 6th, 7th, and 8th
eigenvalues. Although the eigenvalues are weak, note that,
when we combine the FBA and SPS, we obtain a significant
gain to allow a more accurate MOS.

Therefore, the AIC, ESTER, and RADOI methods are
not suitable to perform MOS for GPS3 signals in dynamic
environments. MDL, EFT, and M-EFT also show poor per-
formance. However, when applying the pre-processing meth-
ods FBA and SPS, we can improve the MOS performance.
Mainly, we can achieve better results when combining these
pre-processing methods with the MDL, EFT, and M-EFT
methods. Since the matrix-based MOS methods use slices
of the full tensor, the additional simulations showed that
the PoD remains constant as we increase the number of
collected epochs. Moreover, we performed simulations with
1τ > 0.1Tc, and we observed that the PoD increases as
we increased 1τ . Therefore, in case the LOS and NLOS
components are separated adequately in time, theMOSmeth-
ods will show better performance, as the different signal
components are less correlated in time.

D. TDE CONSIDERING A DYNAMIC SCENARIO
In this section, we present the TDE performance for simula-
tions considering a dynamic scenario and a perfectly aligned
array of antennas with no errors in the array response model.

Since thematrix-based AIC, ESTER, and RADOImethods
showed poor performance in a dynamic scenario, we only
used the matrix-based MDL+FBA+SPS, EFT+FBA+SPS,
and EFT+FBA+SPS methods. Additionally, we performed
simulations considering the model order to be known for
each epoch. Thus, we could divide the main tensor into
new sub-tensors and then perform TDE for each sub-tensor.
Additionally, we present results for the Tensor-based Eigen-
filter. Differently from the CPD-based methods, the Tensor-
based Eigenfilter does not require an estimate of the model
order to perform TDE of the LOS component. Therefore,
the Tensor-based Eigenfilter might be a suitable alternative in
a dynamic scenario. Finally, the CPD-GEVDand theHOSVD
SECSI methods are not suitable to be combined with the
approach in which we create sub-tensors to perform TDE.
Since both methods use the dimension of epochs, e.g., dimen-
sion K , of the tensors to perform factor matrix estimation in
some scenarios with L̂d > K the tensor factorization becomes
impossible.

FIGURE 6. Results of MOS techniques and the proposed Mode 1 HOSVD
SECSI with left-hand matrix method and M = 8 antennas. In both cases
code samples are collected during K = 30 epochs, N = 245520, and
Ld = 5 and Ld = 6.

Since the HOSVD SECSI method is not suitable for the
sub-tensor approach, we exploit the tensor dimensions that
could be used to perform tensor factorization. Thus, we, alter-
natively, use the proposed Mode 1 HOSVD SECSI with the
left-hand slices of the core tensor. In contrast to the HOSVD
SECSI, the proposed Mode 1 HOSVD SECSI with left-hand
slices of the core tensor uses the antenna dimension, i.e., the
third dimension of the tensor Y (d), to perform tensor fac-
torization while the HOSVD SECSI uses the epochs dimen-
sion, i.e., the first dimension of the tensor Y (d). In Figure 6
we show simulation results for the proposed Mode 1
HOSVD SECSI with left-hand matrix slices with K = 30.
As previously described, we use thematrix-basedMOSmeth-
ods to estimate the model order for each epoch, then we
group the epochs with the same model order and create
sub-tensors. Therefore, since the sub-tensor approach is a
solution that aims to create pseudo-static scenarios, we show
that the HOSVD SECSI variant is suitable to perform ten-
sor factorization and TDE when applying the sub-tensor
approach.
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FIGURE 7. MuDe method, MOS techniques and proposed Mode 1 HOSVD
SECSI with left-hand matrix method and M = 8 antennas. In both cases
code samples are collected during K = 30 epochs, N = 245520, and
Ld = 5 and Ld = 6.

E. TDE CONSIDERING A DYNAMIC SCENARIO WITH MuDe
In this section, we discuss TDE considering a dynamic sce-
nario, a perfectly aligned array of antennas (no errors in
the array response model), and the MuDe technique. When
applying matrix-based MOS methods, we again grouped the
epochs with the same estimated model order, as described
previously. The MuDe technique cannot be applied to
the Tensor-based Eigenfilter and a simpler matrix-based
eigenfilter. For simulations with 1φ = 10◦ most MOS
techniques failed to correctly estimate L(t)d by either overesti-
mating or not being capable of determining the model order.
However, when 1φ = 10◦ we could estimate L(t)d apply-
ing the EFT+FBA+SPS, EFT+FBA+SPS, and M-EFT+
FBA+SPS methods.

In Figure 7 we show simulation results for the proposed
Mode 1 HOSVDSECSI with left-handmatrix slices applying
theMuDemethod withK = 30. Note, that the ideal case with
known A and 0 is a reference to the smallest error in noisy
scenarios. However, in practice, A and 0 must be estimated.
Observe that, by inspecting the ideal cases with and without
MuDe, if the tensor had higher dimensions, then the gain of
denoising would be even higher. We can observe a perfor-
mance gain when applying MuDe to the sub-tensors, since
the MOS methods EFT+FBA+SPS, M-EFT+FBA+SPS,
and MDL+FBA+SPS curves show a lower error when com-
bined with MuDe. Besides, since the sub-tensor approach
attempts to generate pseudo-static scenarios from dynamic
ones, the proposedMode 1HOSVDSECSI with the left-hand
matrix method achieves an accurate matrix separation, thus
achieving improved estimates of the factor matrices.

VI. CONCLUSION
State-of-the-art tensor-based TDE methods are not suit-
able for scenarios with a time-varying number of multi-
path components. To overcome this limitation, we proposed
a tensor-based framework capable of performingmodel order
estimation and factor decomposition for time-delay estima-
tion in dynamic multipath scenarios. The proposed approach
is applicable in time-varying multipath environments and
selects the most suitable MOS scheme. To perform high
accuracy factor decomposition, we exploit the model order
estimates for each slice to group the slices into sub-tensors.
Since, by creating sub-tensors, we achieve pseudo-static

sub-scenarios, we obtain a model order larger than the

number of epochs. Therefore, the previous state-of-the-art
CPD-GEVD and HOSVD SECSI are no longer suitable for
dynamic multipath scenarios. We have shown that the pro-
posed Mode 1 HOSVD SECSI provides reliable and accu-
rate estimates when combined with the created sub-tensors.
Furthermore, due to the low power of the NLOS components,
the NLOS components may be identified as noise when per-
forming MOS. Consequently, the PoD is smaller in case the
signals are strongly correlated. Therefore, we have shown that
by combining accurate and robust MOS methods with tensor
factorization techniques, we obtain more accurate TDE of the
LOS signal.
Combining the proposed Mode 1 HOSVD SECSI with

MuDe, an additional performance gain can be achieved due
to the successful denoising of the generated sub-tensors.
Finally, if we increased the number of dimensions and the
size of those dimensions, we would obtain an even higher
performance gain.
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