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Abstract — Recently, the Sequential GSVD (S-GSVD)

based prewhitening scheme has been proposed to im-

prove R-dimensional subspace-based parameter estimation

schemes in the presence of colored noise or interference

with Kronecker structure. To apply the S-GSVD, second

order statistics of the noise should be estimated, e.g., via

samples captured in the absence of the desired signal

components.

In this contribution, we propose the Iterative Sequential

Generalized Singular Value Decomposition (I-S-GSVD)

based prewhitening scheme for multidimensional HOSVD

based subspace estimation when information about the

noise statistics is not available. Even without the avail-

ability of samples in the absence of the desired signals

components, it is possible to obtain the prewhitening cor-

relation factors and the signal parameters in an iterative

way using a deterministic algorithm in combination with

the S-GSVD. This combination constitutes our proposed I-

S-GSVD. Finally, the I-S-GSVD inherits the computational

efficiency from the S-GSVD compared to matrix based

prewhitening schemes.

I. INTRODUCTION

High-resolution parameter estimation from R-dimensional sig-

nals is a task required for a variety of applications, such as

estimating the multidimensional parameters of the dominant

multipath components from MIMO channel sounder measure-

ments, radar, sonar, seismology, and medical imaging.

As shown in [1], subspace-based parameter estimation

schemes can be significantly improved via the S-GSVD based

prewhitening technique in environments with multidimen-

sional colored noise with Kronecker structure, which is found

in certain EEG applications [2] as well as in certain MIMO

applications [3].
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For many EEG and MIMO applications, noise samples

can only be collected in the presence of the desired signal

components. Therefore, in order to improve the subspace-

based parameter estimation in such problems, we propose

a multidimensional prewhitening scheme called Iterative S-

GSVD (I-S-GSVD). The I-S-GSVD has the low complexity of

the S-GSVD and at the same time, it provides a performance

close to the one obtained in the case that the second order

statistics of the noise are estimated from samples where the

desired signal components are absent.

In [1], the parameter estimation accuracy using matrix based

prewhitening schemes [4], [5], [6] is significantly degraded in

the case where only a small number of samples is available in

the absence of the desired signal components. As shown in [1],

the S-GSVD based prewhitening scheme can also handle such

a case successfully.
II. DATA MODEL

We consider the superposition of d planar wavefronts captured

by an R-D array at N subsequent time instants. In the r-th

dimension of the R-D array, there are Mr sensors. Thus, the

measurements obey the following model [7]

X = A×R+1 S
T + N (c), where (1)

A = IR+1,d ×1 A
(1) . . .×R A

(R).

The matrix A
(r) ∈ CMr×d denotes the array steering matrix

in the r-th mode with r = 1, . . . , R, the factor matrix

S ∈ Cd×N contains the symbols si(n), and the tensor

N (c) ∈ CM1×M2×...×MR×N contains the ZMCSCG (zero-

mean circularly-symmetric complex Gaussian) noise samples

with variance σ2
n. We define IR+1,d ∈ Rd×d×...×d as the

identity tensor with R+1 dimensions. The elements of IR+1,d

are equal to 1 when all indices are equal and 0 otherwise.

In (1), the operator ×r stands for the r-mode product, which

is defined according to [8]. The r-mode unfolding of A is

represented by [A](r) and it is the matrix form of A varying

the r-th index along the rows and stacking all the other

indices along the columns of [A](r) in the same order as
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in [8]. The superscript T stands for transposition and other

superscripts used here are H,−1, and +, which mean Hermitian

transposition, matrix inversion, and the Moore-Penrose pseudo

inverse of matrices, respectively.

We represent the i-th column of A
(r) in (1) as a

(r)
i , which

has a Vandermonde structure as function of ej·µ
(r)
i , where µ

(r)
i

are the spatial frequencies of the i-th source (i = 1, . . . , d) in
the r-th dimension (r = 1, . . . , R). Our objective is to improve

the estimate of all the spatial frequencies µ
(r)
i from X in the

presence of colored noise or interference with a Kronecker

structure. The model order is assumed known. For efficient

multi-dimensional model order selection schemes, the reader

is referred to [9], [10], [11]. In addition, in case that the

colored noise presents some special structure, the deterministic

prewhitening scheme presented in [12] can be applied in

conjunction with the proposed I-S-GSVD.

As in [1], the multidimensional colored noise is assumed to

have a Kronecker structure, which can be written as
[

N
(c)

]

(R+1)
= [N ](R+1) · (L1 ⊗L2 ⊗ . . .⊗LR)

T
, (2)

where N ∈ CM1×M2...×N is a white noise tensor with

ZMCSCG elements, ⊗ represents the Kronecker product and

Li ∈ CMi×Mi is the correlation factor of the i-th dimension

of the colored noise tensor N
(c). Similarly to [1], we can

rewrite (2) by using the n-mode products in the following

fashion

N
(c) = N ×1 L1 ×2 L2 . . .×R LR. (3)

The noise covariance matrix in the i-th mode W i is defined

as

E

{

[

N (c)
]

(i)
·
[

N (c)
]H

(i)

}

= α ·W i = α · Li ·L
H
i , (4)

where α is a normalization constant, such that tr(Li ·L
H
i ) =

Mi. The equivalence between (2), (3), and (4) is shown in [1],

and it is the basis for the S-GSVD [1].

III. ITERATIVE SEQUENTIAL GSVD (I-S-GSVD)

In this section, we present the proposed deterministic algo-

rithm to compute the I-S-GSVD. Here we apply the prewhiten-

ing correlation factor estimation (PCFE) iteratively to compute

L̂i, an estimate ofLi. The PCFE is based on estimating W i by

dropping the expectation operator in (4) and then factorizing

this estimate to obtain L̂i, e.g., via a Cholesky factorization.

More details about the PCFE are provided in [1].

Inspired by [13], where a deterministic version of the

Expectation Maximization (EM) algorithm is proposed, we

propose the iterative S-GSVD (I-S-GSVD). Similarly to the de-

terministic EM [13], a certain structure of the data is assumed

in our scheme. Our proposed multidimensional prewhitening

scheme is applied to improve the estimation of the spatial

frequencies. Before starting the deterministic algorithm, first

let us define K and k as the maximum number of iterations

in the iterative approach and the iteration index, respectively.

0) Set k = 1.

1) Given X , compute the subspace tensor U
[s] ∈

CM1×...×MR×d via a truncated HOSVD [8]-based

low-rank approximation according to [7].

2) Given U
[s], estimate the spatial frequencies µ̂

(r)
k,i for

r = 1, . . . , R and for i = 1, . . . , d, for instance, via

R-D Standard-Tensor ESPRIT (R-D STE) [7]. Note

that µ̂
(r)
k,i is the estimate of µ

(r)
i in the k-th iteration.

3) From µ̂
(r)
k,i , compute Â according to the structure of

our data model in (1). Using X and Â, calculate

Ŝ =

(

[X ](R+1) ·
[

Â

]+

(R+1)

)T

.

4) Given Â and Ŝ, the estimate of the noise tensor

N̂
(c)

can be compute via N̂
(c)

= X − Â×R+1 Ŝ
T
.

5) From N̂
(c)
, we can estimate via PCFE the correla-

tion factors L̂r according to [1].

6) Increment k.

7) According to [1], compute the subspace tensor

U
[s] ∈ CM1×...×MR×d via the S-GSVD II of X and

L̂r, for r = 1, . . . , R.

8) Given U [s], estimate the spatial frequencies µ̂
(r)
k,i for

r = 1, . . . , R and for i = 1, . . . , d for instance via

R-D Standard-Tensor ESPRIT (R-D STE) [7].

9) Compute the root mean square change (RMSC)

of the spatial frequencies estimates E
(k)
µ =

√

√

√

√

R
∑

r=1

d
∑

i=1

(

µ̂
(r)
k,i − µ̂

(r)
k−1,i

)2

. If the RMSC E
(k)
µ is

zero or smaller than a certain defined threshold or a

maximum number of iterations is reached, then the

algorithm stops. Otherwise, go to step 3).

Note that in our iterative algorithm the first iteration, i.e., k =
1, can be considered as an initialization, since only for k = 2
some information about the noise is taken into account.

Similarly to the I-S-GSVD, which is the application of the

S-GSVD in a iterative way, the same procedure can be applied

for the tensor prewhitening scheme called n-mode products

with matrix inversions proposed in [1]. Note that although

we call the proposed scheme I-S-GSVD, we consider the S-

GSVD II also proposed in [1] in the simulations instead of the

S-GSVD. The S-GSVD II is computationally more expensive,

however, it has a better a accuracy in comparison with the

S-GSVD.

In our simulations we have observed that between two and

three iterations are always sufficient to achieve the conver-

gence.

IV. SIMULATION RESULTS

Here we generate our samples based on the data model of (1),

where the spatial frequencies µ
(r)
i are drawn from a uniform

distribution in [−π, π]. The source symbols are zero mean

i.i.d. circularly symmetric complex Gaussian distributed with

power equal to σ2
s for all the sources. The SNR at the receiver

is defined as SNR = 10 ·log10

(

σ2
s

σ2
n

)

, where σ2
n is the variance

of the elements of the white noise tensor N in (2).
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Here we consider that the elements of the noise covariance

matrix in the i-th mode W i = Li ·L
H
i vary as a function of

the correlation coefficient ρi similarly as in [1]. As an example

we consider in (5) the structure of W i as a function of ρi for

Mi = 3

W i =





1 ρ∗i (ρ∗i )
2

ρi 1 ρ∗i
ρ2

i ρi 1



 , (5)

where ρi is the correlation coefficient. Note that also other

types of correlation models can be used. To be consistent

with (4), we normalize Li such that tr(Li ·L
H
i ) = Mi.

In order to compare the performance of the proposed

prewhitening scheme combined with R-D Standard-Tensor

ESPRIT (R-D STE), we compute the total RMSE of the

estimated spatial frequencies µ̂
(r)
i as follows

RMSE =

√

√

√

√E

{

R
∑

r=1

d
∑

i=1

(

µ̂
(r)
i − µ

(r)
i

)2
}

. (6)

In all figures, the same legend is used, where R-D STE w/o

PWT means R-D STE without any prewhitening. R-D STE

I-S-GSVD stands for the R-D STE combined with S-GSVD

II [1], while the unknown noise is estimated deterministically

with the iterative approach proposed in Section III. R-D STE

S-GSVD stands for the R-D STE applied together with the

S-GSVD II [1] and assuming that N samples in the absence

of signal components are available.

From Fig. 1 to Fig. 7, we consider an array size of Mr = 5
for r = 1, . . . , 5, and N = 5 snapshots, while for Figs. 8

and 9, we consider an array size Mr = 5 for r = 1, . . . , 7,
and N = 7 snapshots.

By comparing the RMSE using the I-S-GSVD without any

information of the noise statistics to the RMSE using the S-

GSVD which requires second order statistics of the noise in

Fig. 1, the difference is insignificant. In Fig. 2, we consider the

same scenario as in Fig. 1, but we evaluate the SNR versus

the number of iterations k and we fix the noise correlation

coefficients ρi to 0.9. For K = 2 iterations, a performance

very close to the converged RMSE is obtained. Therefore, in

Fig 1, we have considered K = 2.
From Fig. 1 to Fig. 3, we reduce the SNR from 20 dB

to 5 dB and the number of maximum iterations is increased

from K = 2 to K = 3 such that the RMSE of the I-S-

GSVD is closer the converged RMSE. Moreover, while in

Fig. 2 the curves of the I-S-GSVD and the S-GSVD are

very close to each other, in Fig. 4 there is a very small

gap. Therefore, by reducing the SNR, the performance of the

I-S-GSVD becomes closer to the performance of using no

prewhitening scheme. Therefore, we can state that for high

and intermediate SNR regimes, the I-S-GSVD and the S-

GSVD have a similar performance. In addition, the proposed

I-S-GSVD outperforms significantly the estimation without

prewhitening for intermediate and high noise correlation levels

as exemplified in Fig. 5, where the total RMSE is computed

by varying the SNR from -35 dB to 40 dB.
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Fig. 1. Total RMSE of the 5 estimated spatial frequencies versus ρi for
i = 1, . . . , 5 is depicted. The SNR and the number of sources d are set to
20 dB and 3, respectively. The array size is Mi = 5, for i = 1, . . . , 5, and
N = 5. The I-S-GSVD is stopped after the second iteration, i.e., K = 2.

Also comparing Figs. 1 and 3, where the SNR is changed

from 20 dB to 5 dB, the improvement obtained by the S-

I-GSVD compared to the scheme without prewhitening in-

creases. For instance, at ρi = 0.9, the RMSE of the S-I-

GSVD is 10 times smaller than the STE without prewhitening

in Fig. 1, while in Fig. 3 it is 20 times smaller.

In Figs. 6 and 7, we reduce the number of sources from

3 to 2 compared to Fig. 4. In this case, the gain of the I-S-

GSVD with respect to the case without prewhitening is more

significant. Such a behavior is also seen in [1] for the S-GSVD.

In Figs. 8 and 9, we increase the array size Mi, where

i = 1, . . . , 5, and the number of snapshots compared to the

previous figures from 5 to 7. In particular, comparing Figs. 2

and 9, where the only difference is the increase of the tensor

size, the gap between the I-S-GSVD and the S-GSVD remains.

V. CONCLUSIONS

In this paper, we propose the Iterative Sequential GSVD (I-

S-GSVD) based prewhitening, which takes into account the

Kronecker tensor structure of the colored noise and is applica-

ble even when measurements without the desired signal com-

ponents are not available. Our multidimensional prewhitening

scheme has a similar performance as the S-GSVD, where mea-

surements without the desired signal components are required.

Moreover, besides the low computational complexity inherited

from the S-GSVD, the I-S-GSVD achieves convergence with

only two or three iterations, depending on the scenario.
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Fig. 4. Total RMSE of the 5 estimated spatial frequencies versus the number
of iterations k is depicted. The SNR and the number of sources d are set to
5 dB and 3, respectively. The array size is Mi = 5, for i = 1, . . . , 5, and
N = 5. The noise correlation ρi is equal to 0.9. The same scenario as in
Fig. 3 is considered.

−30 −20 −10 0 10 20 30 40
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

SNR [dB]

R
M

S
E

5−D STE w/o PWT

5−D STE S−GSVD

5−D STE I−S−GSVD

Fig. 5. Total RMSE of the 5 estimated spatial frequencies versus the SNR
is depicted. The number of sources d and the correlation coefficient ρi are
set to 3 and to 0.9, respectively. The array size is Mi = 5, for i = 1, . . . , 5,
and N = 5. The I-S-GSVD is stopped after the third iteration, i.e., K = 3.
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Fig. 6. Total RMSE of the 5 estimated spatial frequencies versus ρi for
i = 1, . . . , 5 is depicted. The SNR and the number of sources d are set to
5 dB and 2, respectively. The array size is Mi = 5, for i = 1, . . . , 5, and
N = 5. The I-S-GSVD is stopped after the third iteration, i.e., K = 3.
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Fig. 7. Total RMSE of the 5 estimated spatial frequencies versus the number
of iterations k is depicted. The SNR and the number of sources d are set to
5 dB and 2, respectively. The array size is Mi = 5, for i = 1, . . . , 5, and
N = 5. The noise correlation ρi is equal to 0.9. The same scenario as in
Fig. 6 is considered.
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Fig. 8. Total RMSE of the 5 estimated spatial frequencies versus ρi for
i = 1, . . . , 5 is depicted. The SNR and the number of sources d are set to
5 dB and 3, respectively. The array size is Mi = 7, for i = 1, . . . , 5, and
N = 7. The I-S-GSVD is stopped after the third iteration, i.e., K = 3.
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Fig. 9. Total RMSE of the 5 estimated spatial frequencies versus the number
of iterations k is depicted. The SNR and the number of sources d are set to
5 dB and 3, respectively. The array size is Mi = 7, for i = 1, . . . , 5, and
N = 7. The noise correlation ρi is equal to 0.9. The same scenario as in
Fig. 8 is considered.
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