
1Telematics I (SS 2024): 08 – Transport Layer

Telematics I

Chapter 8
Transport Layer

(Acknowledgement: these slides have mostly been compiled from [KR04, Kar04, Sch04])

2Telematics I (SS 2024): 08 – Transport Layer

Chapter Overview

 Transport Layer Services and Protocols
 Addressing and Multiplexing
 Connection Control
 Flow Control
 Congestion Control
 Transport protocols in the Internet:

 User Datagram Protocol (UDP)
 Transport Control Protocol (TCP)

 Connection Management
 Reliable Data Transfer
 Flow Control
 Congestion Control
 Performance

3Telematics I (SS 2024): 08 – Transport Layer

Transport Services and Protocols

 Provide logical communication
between app processes running
on different hosts

 Transport protocols run in end
systems

 Sending side: breaks app
messages into segments,
passes to network layer

 Receiving side:
reassembles segments into
messages, passes to app
layer

 More than one transport
protocol available to
applications

 Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end-end transport

4Telematics I (SS 2024): 08 – Transport Layer

Internet Transport-Layer Protocols

 Reliable, in-order delivery
(TCP)

 Congestion control
 Flow control
 Connection setup

 Unreliable, unordered
delivery: UDP

 No-frills extension of “best-
effort” IP

 Services not available:
 Delay guarantees
 Bandwidth guarantees

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end-end transport

5Telematics I (SS 2024): 08 – Transport Layer

Chapter Overview

 Transport Layer Services and Protocols
 Addressing and Multiplexing
 Connection Control
 Flow Control
 Congestion Control
 Transport protocols in the Internet:

 User Datagram Protocol (UDP)
 Transport Control Protocol (TCP)

 Connection Management
 Reliable Data Transfer
 Flow Control
 Congestion Control
 Performance

6Telematics I (SS 2024): 08 – Transport Layer

Addressing and Multiplexing

 Provide multiple service
access points (SAP) to
multiplex several
applications
 SAPs can identify

connections or data
flows

 E.g., “port numbers”
 Dynamically allocated
 Predefined for “well-

known services” – port
80 for Web server

7Telematics I (SS 2024): 08 – Transport Layer

Multiplexing/Demultiplexing

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2P3 P4P1

host 1 host 2 host 3

= process= socket

Delivering received segments
to correct socket

Demultiplexing at rcv host:
Gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

Multiplexing at send host:

8Telematics I (SS 2024): 08 – Transport Layer

How Demultiplexing Works

 Host receives IP datagrams
 Each datagram has source

IP address, destination IP
address

 Each datagram carries 1
transport-layer segment

 Each segment has source,
destination port number
(recall: well-known port
numbers for specific
applications)

 Host uses IP addresses &
port numbers to direct
segment to appropriate
socket

source port # dest port #

32 bits

application
data

(message)

other header fields

TCP/UDP segment format

9Telematics I (SS 2024): 08 – Transport Layer

Connectionless Demultiplexing

 Create sockets with port numbers:
DatagramSocket mySocket1 =
new DatagramSocket(9111);

DatagramSocket mySocket2 =
new DatagramSocket(9222);

 UDP socket identified by two-
tuple:

(dest IP address, dest port number)

 When host receives UDP
segment:

 Checks destination port
number in segment

 Directs UDP segment to
socket with that port
number

 IP datagrams with different
source IP addresses and/or
source port numbers directed
to same socket

10Telematics I (SS 2024): 08 – Transport Layer

Connectionless Demultiplexing (continued)

DatagramSocket serverSocket = new DatagramSocket(6428);

Client
IP:B

P2

Client
 IP: A

P1P1P3

Server
IP: C

SP: 6428

DP: 9157

SP: 9157

DP: 6428

SP: 6428

DP: 5775

SP: 5775

DP: 6428

Source port (SP) provides “return address”Source port (SP) provides “return address”

11Telematics I (SS 2024): 08 – Transport Layer

Connection-Oriented Demultiplexing

 TCP socket identified by 4-
tuple:

 Source IP address
 Source port number
 Dest IP address
 Dest port number

 Receiving host uses all four
values to direct segment to
appropriate socket

 Server host may support
many simultaneous TCP
sockets:

 Each socket identified by its
own 4-tuple

 Web servers have different
sockets for each connecting
client

 Non-persistent HTTP will
have different socket for
each request

12Telematics I (SS 2024): 08 – Transport Layer

Connection-Oriented Demultiplexing (continued)

Client
IP:B

P1

Client
 IP: A

P1P2P4

Server
IP: C

SP: 9157

DP: 80

SP: 9157

DP: 80

P5 P6 P3

D-IP:C

S-IP: A

D-IP:C

S-IP: B

SP: 5775

DP: 80

D-IP:C

S-IP: B

13Telematics I (SS 2024): 08 – Transport Layer

Connection-Oriented Demux: Threaded Web Server

Client
IP:B

P1

Client
 IP: A

P1P2

Server
IP: C

SP: 9157

DP: 80

SP: 9157

DP: 80

P4 P3

D-IP:C

S-IP: A

D-IP:C

S-IP: B

SP: 5775

DP: 80

D-IP:C

S-IP: B

One process can have multiple simultaneous connectionsOne process can have multiple simultaneous connections

14Telematics I (SS 2024): 08 – Transport Layer

Chapter Overview

 Transport Layer Services and Protocols
 Addressing and Multiplexing
 Connection Control
 Flow Control
 Congestion Control
 Transport protocols in the Internet:

 User Datagram Protocol (UDP)
 Transport Control Protocol (TCP)

 Connection Management
 Reliable Data Transfer
 Flow Control
 Congestion Control
 Performance

15Telematics I (SS 2024): 08 – Transport Layer

Connection Control

 Recall the two types of communication services to be distinguished:
 Connection-oriented service
 Connectionless service

In the following, we will deal with connection-oriented services

 In principle, there are three phases of a connection:
 Connection establishment phase (Connect)
 Data transfer phase (Data)
 Connection release phase (Disconnect)

For every phase there are specific service primitives

 When talking about the service of a specific layer, we usually add a
layer specific prefix to the primitives, e.g.:
 Transport Layer: T-Connect, T-Data, T-Disconnect
 Network Layer: N-Connect, N-Data, N-Disconnect (note, however, that the

network layer of the Internet provides a connectionless service)

16Telematics I (SS 2024): 08 – Transport Layer

Transport Connections and End-System „Connectivity“

End-System A Endsystem B

Transport Connection

End-System „Connectivity“

TSAP

NSAP

Transport
Layer (4)

Network
Layer (3)

Transport
Service User

Transport
Service User

Network
Entity A

Network
Layer B

Transport ProtocolTransport
Entity A

Transport
Entity B

17Telematics I (SS 2024): 08 – Transport Layer

Transport Connection Establishment (OSI Terminology)

 Confirmed service primitive: T-Connect
 Primitive:

 T-Connect.Request (Destination Address, Source Address)
 T-Connect.Indication (Destination Address, Source Address)
 T-Connect.Response (Responding Address)
 T-Connect.Confirmation (Responding Address)

 Parameters:
 Destination Address: Address of the called transport service user

(= application)
 Source Address: Address of the calling service user
 Responding Address: Address of the responding service user (in

general, this is the address of the called service user)

18Telematics I (SS 2024): 08 – Transport Layer

Transport Layer Services in a Message Sequence Chart

Primitive Type

T-Connect confirmed

T-Data unconfirmed

T-Disconnect unconfirmed

(or confirmed)

Example Run:

T-Connect.Req

T-Connect.Cnf

T-Connect.Ind
T-Connect.Rsp

T-Data.Req

T-Data.Req

T-Data.Ind

T-Data.Ind

T-Disconnect.Req
T-Disconnect.Ind

t t

T-Data.Req

T-Data.Ind

19Telematics I (SS 2024): 08 – Transport Layer

Data Transfer Service

 Data Transfer Service: T-Data
 unconfirmed service

 Primitive:
 T-Data.req (userdata)
 T-Data.ind (userdata)

 Parameter:
 Userdata: transport service data unit to be transfered (TSDU,

can have arbitrary length)

T-Data.req

T-Data.ind
t

20Telematics I (SS 2024): 08 – Transport Layer

Connection Release (1)

 Unconfirmed release service: T-Disconnect
 Usage:

 Abrupt teardown of a connection, loss of TSDUs is possible
 Rejection of a connection establishment request

 Primitives:
 T-Disconnect.req (userdata)
 T-Disconnect.ind (cause, userdata)

 Parameters:
 Cause of the teardown, e.g.:

 unknown
 requested by remote user
 lack of local or remote resources for the transport service provider
 Quality of service below minimal level
 error occured in transport service provider
 can not reach remote transport service user

 User Data: TSDU to be transfered (max. length e.g. 64 Byte)

21Telematics I (SS 2024): 08 – Transport Layer

Connection Release (2)

 Teardown of a connection by a service user:

T-Disconnect.req

T-Disconnect.ind

Teardown of a connection by a service provider:

T-Disconnect.ind

Rejection of connection establishment:

T-Disconnect.req

T-Disconnect.ind

T-Disconnect.ind

T-Connect.req

T-Connect.ind

t

t

t

22Telematics I (SS 2024): 08 – Transport Layer

State Diagram for a Transport Service Access Point

2
Establishing

outgoing
Connection

3
Establishing

incoming
Connection

1

Idle

4

Connection
established

T-Disconnect.req T-Disconnect.req

T-Disconnect.ind T-Disconnect.ind

T-Disconnect.ind

T-Disconnect.req

T-Connect.req

T-Connect.rspT-Connect.cnf

T-Connect.ind

T-Data

23Telematics I (SS 2024): 08 – Transport Layer

Errors during Connection Establishment

 Loss of CR oder CC TPDU:

 Duplication of TPDUs:

T-Connect.Req CR

Timeout

T-Connect.Req

T-Connect.Ind
CR

CC T-Connect.Rsp

T-Connect.Cnf

T-Connect.Ind
CR

CC
T-Connect.Rsp
T-Connect.Ind

CR T-Connect.Rsp

T-Connect.Cnf

CC
Timeout

t

t

24Telematics I (SS 2024): 08 – Transport Layer

Three-Way Handshake

T-Connect.ind

T-Connect.rsp

T-Data.req

T-Data.req

CR

CC

T-Connect.req

T-Connect.ind
CR

T-Connect.rsp
T-Connect.cnf

CC

AK or DT

 Solution - Three-Way Handshake
during connection establishment:

 Connection is established, when
both connection establishment
TPDUs (CR and CC) have been
acknowledged

 Requires an additional AK
(Acknowledge) or DT (Data) TPDU

Problem: Loss of CC TPDU

t

t

T-Connect.req

?

DT

DT

25Telematics I (SS 2024): 08 – Transport Layer

Is Three-Way Handshake Sufficient?

 No, it does not protect against delayed duplicates!
 Problem: If both the connection request and the connection confirmation

are duplicated and delayed, receiver again has no way to ascertain
whether this is fresh or an old copy

 Solution: Have the sender answer a question that the receiver asks!
 Actually: Put sequence numbers into

 connection request
 connection acknowledgement,
 and connection confirmation

 Have to be copied by the receiving
party to the other side

 Connection only established if the
correct number is provided

 Sequence numbers should not be
re-used too quickly (start with number
higher than in last connection;
wrap-around)

26Telematics I (SS 2024): 08 – Transport Layer

Three-Way Handshake + Sequence Numbers

 Two examples for critical cases (which are handled correctly):

 Connection request appears as
an old duplicate:

 Connection request &
confirmation appear as old
duplicates:

27Telematics I (SS 2024): 08 – Transport Layer

Connection Rejection

 Refusing an incoming connection request with a Disconnect-Request
(DR) or Error-TPDU (reasons for this can be communicated)
 Reasons:

 Rejection by transport service user
 Desired service requirements can not be fulfilled

T-Connect.req

T-Disconnect.ind

CR

DC

DR

DR: Disconnect Request TPDU
DC: Disconnect Confirm TPDU

t

28Telematics I (SS 2024): 08 – Transport Layer

Connection Release (1)
 Normal Release:

 Teardown of an existing transport connection
 This can cause loss of data that has not yet been acknowledged

 The Internet transport protocol TCP avoids loss of data by
requiring all sent PDUs to be acknowledged before a connection is
closed

 Variants:
 Implicit: Teardown of network layer connection (not in the Internet,

however, the remote peer entity might become unreachable)
 Explicit: connection release with Disconnect-TPDUs

DR: Disconnect Request TPDU
DC: Disconnect Confirm TPDU

T-Disconnect.req

T-Disconnect.ind
DT

DC

DR T-Data.req

t

29Telematics I (SS 2024): 08 – Transport Layer

Connection Release (2)

 Once connection context between two peers is established,
releasing a connection should be easy
 Goal: Only release connection when both peers have agreed that

they have received all data and have nothing more to say
 I.e., both sides must have invoked a “Close”-like service primitive

 It fact, it is impossible
 Problem: How to be sure that the other peer knows that you know

that it knows that you know … that all data have been transmitted
and that the connection can now safely be terminated?

 Analogy: Two army problem

30Telematics I (SS 2024): 08 – Transport Layer

Two Army Problem

 Coordinated attack
 Two armies form up for an attack against each other
 One army is split into two parts that have to attack together – alone

they will lose
 Commanders of the parts communicate via messengers who can be

captured
 Which rules shall the commanders use to agree on an attack date?
 Provably unsolvable if the network can loose messages

How to coordinate?

31Telematics I (SS 2024): 08 – Transport Layer

Connection Release in Practice

 Two army problem equivalent to connection release
 But: when releasing a connection, bigger risks can be taken

 Usual approach: Three-way
handshake again
 Send disconnect request (DR),

set timer,
wait for DR from peer,
acknowledge it

32Telematics I (SS 2024): 08 – Transport Layer

Problem Cases for Connection Release with 3WHS

 Lost ACK solved
by (optimistic)
timer in Host 2

 Lost second DR
solved by
retransmission of
first DR

 Timer solves
(optimistically)
case when 2nd DR
and ACK are lost

33Telematics I (SS 2024): 08 – Transport Layer

Chapter Overview

 Transport Layer Services and Protocols
 Addressing and Multiplexing
 Connection Control
 Flow Control
 Congestion Control
 Transport protocols in the Internet:

 User Datagram Protocol (UDP)
 Transport Control Protocol (TCP)

 Connection Management
 Reliable Data Transfer
 Flow Control
 Congestion Control
 Performance

34

Motivation: Controlling Overload Situations

 Usually, multiple systems are involved in a communication
taking place:
 the system initiating the communication
 the responding system
 the network between initiator and responder with its intermediate

systems

 In order to avoid overload situations:
 The amount of data exchanged has to be adapted to the current

capabilities (i.e. available resources) of the systems involved
 Otherwise a couple of problems may arise (performance

bottlenecks; see following slides)

35Telematics I (SS 2024): 08 – Transport Layer

Bottlenecks in Communication Systems

Sender Receiver

Bottleneck in the
Communication
Channel Medium

Communication Channel

Bottleneck

Sender Receiver

Medium

Communication Channel
Bottleneck at
the Receiver

Bottleneck

36Telematics I (SS 2024): 08 – Transport Layer

Bottleneck in Receiver

 Assumption:
 The network does not represent a

bottleneck; it can deliver all packets
sent by the sender

 Reasons for bottleneck in receiver:
 Communicating end systems have

different performance characteristics
(fast sender & slow receiver)

 Receiver has to receive packets from
many senders

 Consequences:
 Receiver can not keep up with

processing all incoming packets
 Receive buffer overflow
 Data gets lost

Sender Receiver

Data
Data
Data
Data
Data
Data
Data
Data
Data
Data

Buffer
Overflow

37Telematics I (SS 2024): 08 – Transport Layer

SenderSender

Example: Buffer Overflow in a Point-to-Point Connection

Receiver

Fast Sender Slow Receiver

38Telematics I (SS 2024): 08 – Transport Layer

Flow Control

 Task:
 To protect a receiver from having to process too many

packets from a faster sender

 Where provided:
 At the link layer to prevent overload of „forwarding segments“

(consisting of node-link-node)
 At higher layers (e.g. network and transport layers) in order to

protect overload of connections

 But, flow control in transport layer is more complicated:
 Many connections, need to adapt the amount of buffer per

connection dynamically (instead of just simply allocating a fixed
amount of buffer space per outgoing link)

 Transport layer PDUs can differ widely in size, unlike link layer
frames

 Network’s packet buffering capability further complicates the picture

39Telematics I (SS 2024): 08 – Transport Layer

Flow Control – Buffer Allocation

 Flow control is strongly related to buffer allocation, as the receiver
must able to store incoming packets until they can be processed

 Thus, in order to support outstanding packets, the sender either
 Has to rely on the receiver to process packets as they come in (packets

must not be reordered) – unrealistic, or
 Has to assume that the receiver has sufficient buffer space available

 The more buffer, the more outstanding packets
 Necessary to obtain highly efficient transmission, recall bandwidth-delay

product!

 How does sender have buffer assurance?
 Receiver slows sender down, when no more buffer space is available

(either explicitly or implicitly)
 Sender can request buffer space
 Receiver can tell sender: “I have X buffers available at the moment”

 For sliding window protocols: Influence size of sender’s send window

40Telematics I (SS 2024): 08 – Transport Layer

Flow Control with Stop and Continue Messages

 Easiest Solution
 Sender Receiver Flow Control

 Exchange of explicit notifications
– Stop
– Continue

 If the receiver can not keep up with the
incoming data flow,
it sends a stop message to the sender

 If he becomes able to receive again, it sends a
continue message

 Example: XON/XOFF Protocol
 With ISO 7-Bit-Alphanumerical characters
 XON is DC1 (Device Control 1).

 XOFF is DC3 (Device Control 3).
 Can only be used on full duplex

communication lines

Sender Receiver

Data
Data
Data
Data

Stop

Continue

Data

Data

Data
Data

t

41Telematics I (SS 2024): 08 – Transport Layer

Implicit Flow Control

 Idea:
 By holding back

acknowledgements (ACK or
NACK), the sender can be
slowed down

 This basically means, that an
error control mechanism is
„(ab)used“ for flow control

 Drawback:
 The sender can not distinguish:

 if his packet(s) got lost, or
 if the receiver holds back the

acknowledgements in order
to slow him down (resulting
in unnecessary
retransmissions)

Sender Receiver

Data

ACK

ACK

Data

Receiver
Overload

Data

?

t

42Telematics I (SS 2024): 08 – Transport Layer

Credit Based Flow Control

 Idea:
 The receiver gives the sender explicit credit to send multiple packets
 If the sender runs out of credit (and does not get new credit), it stops

sending and waits for new credit
 However, this requires that explicit error control is provided in order

to be able to recover from loss of credit messages
 Implementation alternatives:

 Absolute credit:
 The receiver gives an absolute credit to the sender (e.g. “you

may send 5 more packets”)
 Drawback: potential ambiguities because the sender receives

credit at a different point in time than when the receiver sent it
 Credit window („sliding window“):

 Credit is given relatively to an acknowledged packet

43Telematics I (SS 2024): 08 – Transport Layer

Flow Control – Permits and Acknowledgements

 Distinguish:
 Permits (“Receiver has buffer space, go ahead and send more

data”)
 Acknowledgements (“Receiver has received certain packets”)

 Should be separated in real-world protocols!

 Can be combined with dynamically changing buffer space at the
receiver
 Due to, e.g., different speed with which the application actually

retrieves received data from the transport layer
 Example: TCP

 Please note: some protocols ask for the next packet not yet
received in order, while other protocols acknowledge the last
packet received in order (see next two examples)

44Telematics I (SS 2024): 08 – Transport Layer

Credit Based Flow Control: Sliding Window
 Example: Sliding Window Mechanism with explicit permits (= credit notification)

C,S

DT[S=0]
DT[S=1]
DT[S=2]

DT[S=3]

SenderSender ReceiverReceiver

 S: Sequence number (of last sent packet)
 R: Next expected sequence number = Acknowledges up to sequence number R-1
 C: Upper window limit (maximum permitted sequence number)
 P: Number of packets that may be transmitted, starting from next expected packet

6

4 S
C

0
1

35

7
2

6
7

R

C

0
1

3
45

2

6

0

C, R

1

3
45

7
2

0

R

17
C 6

3
45

2

C

6

0

S
1

3
45

7
2

0

4

6
1

35

7
2

t t
ACK[R=3], Perm(P=4)

26

0
1

3
45

7

C

SS

45Telematics I (SS 2024): 08 – Transport Layer

One More Example of Flow Control with ACK/Permit Separation

 Arrows show direction of transmission, “…” indicates lost packet
 Potential deadlock in step 16 when control PDU is lost and not retransmitted

46Telematics I (SS 2024): 08 – Transport Layer

Chapter Overview

 Transport Layer Services and Protocols
 Addressing and Multiplexing
 Connection Control
 Flow Control
 Congestion Control
 Transport protocols in the Internet:

 User Datagram Protocol (UDP)
 Transport Control Protocol (TCP)

 Connection Management
 Reliable Data Transfer
 Flow Control
 Congestion Control
 Performance

47Telematics I (SS 2024): 08 – Transport Layer

Why Congestion Control?

Recall overload in network:
 Any network can only

transport a bounded
amount of traffic per unit
time
 Link capacities are limited,

processing speed in
routers, buffer space, …

 When sources inject more
traffic into the network than
its nominal capacity,
congestive collapse
(usually) results

 Consequence: packets are
lost!

Destination
1.5-Mbps T1 link

Router

Source
2

Source
1

100-Mbps FDDI

10-Mbps Ethernet Destination
1.5-Mbps T1 link

Router

Source
2

Source
1

100-Mbps FDDI

10-Mbps Ethernet

48Telematics I (SS 2024): 08 – Transport Layer

Causes/Costs of Congestion: Scenario 1

 Two senders, two
receivers

 One router, infinite
buffers

 No retransmission

 Large delays when
congested

 Maximum possible
throughput achieved

unlimited shared
output link buffers

Host A
in : original data

Host B

out

49Telematics I (SS 2024): 08 – Transport Layer

Causes/Costs of Congestion: Scenario 2

 One router, finite buffers
 Senders retransmit only lost packets (perfect knowledge)

finite shared output link
buffers

Host A in : original data

Host B

out

'in : original data, plus
retransmitted data

50Telematics I (SS 2024): 08 – Transport Layer

Causes/Costs of Congestion: Scenario 2
 Always: (goodput)

 “Perfect” retransmission only when loss:

 Retransmission of delayed (not lost) packet makes larger (than

perfect case) for same

in

out

=

in

out

>

in

out

“Costs” of congestion:
 More work (retransmissions) for given “goodput”
 Unneeded retransmissions: link carries multiple copies of packets

R/2

R/2
in

 o
u

t

R/2

R/2
in

 o
u

t

R/2

R/2
in

 o
u

t

R/4

R/3

Send only when „room“ in router Retransmit only lost packets Retransmit after timeout

51Telematics I (SS 2024): 08 – Transport Layer

Causes/Costs of Congestion: Scenario 3

 Four senders
 Multihop paths
 Timeout/Retransmit

in

Q: What happens as and increase ?
in

finite shared output link
buffers

Host A
in : original data

Host B

out

'in : original data, plus
retransmitted data

52Telematics I (SS 2024): 08 – Transport Layer

Causes/Costs of Congestion: Scenario 3

Another “cost” of congestion:
 When packet dropped, any “upstream transmission

capacity used for that packet was wasted!

Host
A

Host
B

ou
t

53Telematics I (SS 2024): 08 – Transport Layer

Intermediate Summary: Need For Congestion Control

 Congestion control is essential to avoid snowball effects
 Once a network is overloaded, it will loose packets (buffer

overflows, etc.)
 Once a reliable transport protocol detects packet loss, it will

retransmit the lost packets
 These retransmissions further increase the load in the

network
 More packets will be lost
 More retransmissions will happen
 Etc.

 Mechanisms to damper/avoid such oscillations are necessary

54Telematics I (SS 2024): 08 – Transport Layer

Adapt Sending Rate to Network Capacity

 Sending rate of each
source has to be adapted
to the network’s actual,
current capacity

 Global issue: depends
on all routers, forwarding
disciplines, load injected
by other terminals, etc.

 Made complicated by
interaction of
mechanisms of many
different layers

 Flow control, on the other hand: local
issue!
 Source must not overrun its destination
 Only source and destination are

involved (possibly separated by
multiple hops, but that is irrelevant)

55Telematics I (SS 2024): 08 – Transport Layer

Desirable Properties of Congestion Control

 Congestion control should result in many packets delivered at
short delays
 Protect network from congestive collapse but still transport as

much data as possible

 Fairness
 Give all participating flows a “fair” share of available capacity
 Does fair mean “equal”? Video conference = telnet session?
 Should path lengths be considered?

3-hop flow

3x 1-hop flows

56Telematics I (SS 2024): 08 – Transport Layer

Design Options for Congestion Control Mechanisms

 Open loop: design system up front so that it will work correct, no
corrections at runtime necessary

 Closed loop: use some sort of feedback to allow sender to adapt to
current situation

 Explicit feedback: point where congestion occurs informs sender
 Implicit feedback: no explicit action taken; congestion is deduced by

sender from the network’s behavior (e.g., missing acknowledgements)

Open-loop schemes Closed-loop schemes

Act at
source

Act at
destination

Explicit
feedback

Implicit
feedback

57Telematics I (SS 2024): 08 – Transport Layer

Possible Actions

 Increase capacity – activate additional links, routers, …
 Usually not practical, at least on short timescales

 Reservations and admission control – do not admit additional
traffic when network is nearing capacity limit
 Usually only applicable to circuit-switched (or similar) networks
 Feedback about network state only relatively rarely – akin to open-

loop control

 Reduce load at smaller granularity
 Have some/all sources reduced their offered load without

terminating on-going sessions
 Usually requires feedback from the network (closed loop)

58Telematics I (SS 2024): 08 – Transport Layer

Possible Actions – Taxonomy

 Router-centric vs. host-centric
 Where is/are information gathered, decisions made, actions taken?
 Usually not either/or, but more a question of emphasis

 Window-based vs. rate-based
 How is the allowed amount of traffic injected into the network

described?
 By a rate – so and so many bytes per second?
 By a congestion window – as a set of sequence numbers/amount

of bytes that may be injected into the network before further
permits are received?

 Further options exist, e.g., credit-based congestion control, but are
much less popular

59Telematics I (SS 2024): 08 – Transport Layer

Router Actions: Dropping Packets

 Suppose a router’s buffer space is full and a packet arrives
 Obviously, there is one packet too many, and one of them has to

be dropped

 One candidate: the newly arriving packet
 Intuition: “old” packets are more valuable than new ones, e.g., for a

go-back-n transport protocol
 A so-called drop-tail queue

 Other option: a packet that is already in the queue for quite
some time
 Intuition: For multi-media traffic, new packets are more important

than old ones
 Maybe even try to drop a packet from the same flow as the newly

arriving packet’s, but that might not be feasible (overhead)

60Telematics I (SS 2024): 08 – Transport Layer

Dropping Packets = Implicit Feedback

 Dropping a packet constitutes an implicit feedback action
 The sending transport protocol can detect this packet loss (if it so

desires, e.g., by missing acknowledgements)
 Assumption: Packet loss is only (or predominantly) caused by

congestion
 Then: Correct action by a transport protocol is to reduce its offered

load

 Assumption is by and large true in wired networks but not in
wireless networks

 In open-loop congestion control, packets arriving to a full queue
should never happen
 Else, resource reservations were not done correctly

61Telematics I (SS 2024): 08 – Transport Layer

Avoiding Full Queues – Proactive Actions?

 When packets arrive to a full queue, things are pretty bad
already
 Is there any chance we can try to avoid such a situation, without

having to recur to open-loop control?
 Provide proactive feedback! (Congestion avoidance)

 Do not only react when the queue is full, but already when the
“congestion indicator” has crossed some threshold

 E.g., when the average queue length
has exceeded a lower threshold

 E.g., when the outgoing link
utilization is persistently higher
than a threshold

 E.g., …
 Router is then called to be in a warning state

MaxThreshold MinThreshold

AvgLen

MaxThreshold MinThreshold

AvgLen

62Telematics I (SS 2024): 08 – Transport Layer

Proactive Action: Choke Packets

 Once a router decides it is congested (or that it likely will be in
the near future):

 Send out choke packets

 A choke packet tells the source of a packet arriving during
warning state to slow down its sending rate

 Obvious problem: In an already congested network, more
packets are injected to remedy congestion
 Questionable

 Second problem: How long does it take before source learns
about congestion?
 How much data has already been injected?

 Think in terms of the data rate-delay product

63Telematics I (SS 2024): 08 – Transport Layer

Proactive Action: Warning Bits

 Once a router decides it is congested (or that it likely will be in
the near future):

 Set a warning bit in all packets that it sends out

 Destination will copy this warning bit into its
acknowledgement packet

 Source receives the warning bit and reduces its sending rate

64Telematics I (SS 2024): 08 – Transport Layer

Proactive Actions: Random Early Detection (RED)

 Exploit lost packets as implicit feedback, but not only when the
queue is already full

 Instead: early on deliberately drop some packets to provide
feedback
 Sounds cruel, but it might save later packets from being dropped

 Dropping probability can be increased as a router becomes
more and more congested
 E.g., as the queue becomes longer and longer

P(drop)

1.0

MaxP

MinTh MaxTh

MaxThreshold MinThreshold

AvgLen

MaxThreshold MinThreshold

AvgLen AvgLen

65Telematics I (SS 2024): 08 – Transport Layer

What Happens After Feedback Has Been Received?

 Once feedback of some sort has been received by a sending
transport protocol instance, it has to react on it

 Rate-based protocols: Reduce rate, e.g., by a constant factor
 Relatively easy
 Question: How to increase rate again?

 Window-based protocols: Shrink the congestion window
 By how much?
 How to grow the window in the first place?
 What to do with a large window – sending out bursts not a good

idea

We will discuss these questions with TCP as a case study

66Telematics I (SS 2024): 08 – Transport Layer

Chapter Overview

 Transport Layer Services and Protocols
 Addressing and Multiplexing
 Connection Control
 Flow Control
 Congestion Control
 Transport protocols in the Internet:

 User Datagram Protocol (UDP)
 Transport Control Protocol (TCP)

 Connection Management
 Reliable Data Transfer
 Flow Control
 Congestion Control
 Performance

67Telematics I (SS 2024): 08 – Transport Layer

UDP: User Datagram Protocol [RFC 768]

 “No frills,” “bare bones”
Internet transport protocol

 “Best effort” service, UDP
segments may be:

 Lost
 Delivered out of order

to app
 Connectionless:

 No handshaking
between UDP sender,
receiver

 Each UDP segment
handled independently
of others

Why is there a UDP?
 No connection establishment

(which can add delay)
 Simple: no connection state

at sender, receiver
 Small segment header
 No congestion control: UDP

can blast away as fast as
desired

68Telematics I (SS 2024): 08 – Transport Layer

User Datagram Protocol (continued)

 Often used for streaming
multimedia apps

 Loss tolerant
 Rate sensitive

 Other UDP uses
 DNS
 SNMP

 Reliable transfer over UDP:
add reliability at application
layer

 Application-specific error
recovery

 Please, do not do this for
applications that generate
large traffic volumes

source port # dest port #

32 bits

Application
data

(message)

UDP segment format

length checksum
Length, in

bytes of UDP
segment,
including

header

69Telematics I (SS 2024): 08 – Transport Layer

UDP Checksum

Sender:
 Treat segment contents as

sequence of 16-bit integers
 Checksum: addition (1’s

complement sum) of segment
contents

 Sender puts checksum value
into UDP checksum field

Receiver:
 Compute checksum of received

segment
 Check if computed checksum

equals checksum field value
(or include checksum field in
addition and compare to zero):

 NO - error detected
 YES - no error detected. But

maybe errors nonetheless?
(recall link layer chapter)

Goal: detect “errors” (e.g., flipped bits) in transmitted segment

70Telematics I (SS 2024): 08 – Transport Layer

Internet Checksum Example

 Note
 When adding numbers, a carryout from the most significant

bit needs to be added to the result

 Example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum
checksum

71Telematics I (SS 2024): 08 – Transport Layer

Chapter Overview

 Transport Layer Services and Protocols
 Addressing and Multiplexing
 Connection Control
 Flow Control
 Congestion Control
 Transport protocols in the Internet:

 User Datagram Protocol (UDP)
 Transport Control Protocol (TCP)

 Connection Management
 Reliable Data Transfer
 Flow Control
 Congestion Control
 Performance

72Telematics I (SS 2024): 08 – Transport Layer

Transport Control Protocol (TCP)

 Full duplex data:
 Bi-directional data flow in

same connection
 MSS: maximum segment size

 Connection-oriented:
 Handshaking (exchange of

control msgs) initializes
sender & receiver state
before data exchange

 Flow controlled:
 Does not overwhelm receiver

 Point-to-point:
 one sender, one receiver

 Reliable, in-order byte
stream:
 no “message boundaries”

 Pipelined:
 TCP congestion and flow

control set window size
 Send & receive buffers

socket
door

TC P
send buffer

TC P
receive buffer

socket
door

segm ent

application
writes data

application
reads data

73Telematics I (SS 2024): 08 – Transport Layer

TCP Segment Structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number

acknowledgement number

Receive window

Urg data pnterchecksum

FSRPAU
head
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes receiver
is willing to accept
(window scaling
can be negotiated,
see RFC 1323)

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

74Telematics I (SS 2024): 08 – Transport Layer

TCP Sequence Numbers and ACKs

Seq. #’s:
 Byte stream “number”

of first byte in
segment’s data

ACKs:
 Seq # of next byte

expected from other
side

 Cumulative ACK

Q:How does receiver handle
out-of-order segments?

 A: TCP spec doesn’t
say, - up to
implementor

Host A Host B

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of

‘C’, echoes
back ‘C’

time
simple telnet scenario

75Telematics I (SS 2024): 08 – Transport Layer

TCP Round Trip Time and Timeout

Q: How to set TCP
timeout value?

 Longer than RTT
 But RTT varies

 Too short: premature
timeout

 Unnecessary
retransmissions

 Too long: slow reaction to
segment loss

Q: How to estimate RTT?
 SampleRTT: measured time from

segment transmission until ACK
receipt

 Ignore retransmissions
 SampleRTT will vary, want

estimated RTT “smoother”
 Average several recent

measurements, not just current
SampleRTT

Recall: Reliable data transfer needs to handle timeouts

76Telematics I (SS 2024): 08 – Transport Layer

TCP Round Trip Time and Timeout

EstimatedRTT = (1-)*EstimatedRTT + *SampleRTT

 Exponential weighted moving average
 Influence of past sample decreases exponentially fast
 Typical value: = 0.125

77Telematics I (SS 2024): 08 – Transport Layer

Example RTT Estimation

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

RT
T

(m
ill

is
ec

on
ds

)

SampleRTT Estimated RTT

78Telematics I (SS 2024): 08 – Transport Layer

TCP Round Trip Time and Timeout

Setting the timeout

 EstimatedRTT plus “safety margin”
 Large variation in EstimatedRTT -> larger safety margin

 First estimate of how much SampleRTT deviates from
EstimatedRTT:

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-)*DevRTT +
 *|SampleRTT-EstimatedRTT|

(typically, = 0.25)

 Then set timeout interval:

79Telematics I (SS 2024): 08 – Transport Layer

Chapter Overview

 Transport Layer Services and Protocols
 Addressing and Multiplexing
 Connection Control
 Flow Control
 Congestion Control
 Transport protocols in the Internet:

 User Datagram Protocol (UDP)
 Transport Control Protocol (TCP)

 Connection Management
 Reliable Data Transfer
 Flow Control
 Congestion Control
 Performance

80Telematics I (SS 2024): 08 – Transport Layer

TCP Connection Establishment

 TCP connections can be established in active (connect) or passive
mode (using listen/accept)
 Active Mode: Requesting a TCP connection with a specified

transport service user (identified via IP address and port number)
 Passive Mode: an application informs TCP, that it is ready to

accept an incoming connection
 Can specify a specific socket, on which an incoming

connection is expected, or
 all incoming connections will be accepted (unspecified passive

open)
 Upon an incoming connection request, a new socket is created

that will serve as connection endpoint
 Note: The connection is established by the TCP-entities without

further interaction with the application, i.e. there is no service
primitive corresponding to T-CONNECT.Rsp

81Telematics I (SS 2024): 08 – Transport Layer

Connection Identification in TCP

 A TCP connection is setup
 Between a single sender and a single receiver
 More precisely, between application processes running on

these systems
 TCP can multiplex several such connections over the

network layer, using the port numbers as Transport SAP
identifiers

 A TCP connection is thus identified by a four-tuple:

(Source Port, Source IP Address,
 Destination Port, Destination IP Address)

82Telematics I (SS 2024): 08 – Transport Layer

TCP Connection Management (1)

Three way handshake:

Step 1:

 Client host sends TCP SYN segment (~ CR-PDU) to server
 Specifies initial seq #
 No data

Step 2:
 Server host receives SYN, replies with SYNACK segment

(~ CC-PDU)

 Server allocates buffers
 Specifies server initial seq. #

Step 3:
 Client receives SYNACK, replies with ACK segment, which may

contain data

83Telematics I (SS 2024): 08 – Transport Layer

TCP Connection Management (2)

Closing a connection:

Client closes socket (sockets will
be treated in next chapter):

clientSocket.close();

Step 1:

Client end system sends TCP FIN
(~ DR-PDU) control segment to
server

Step 2:

Server receives FIN, replies with
ACK
Closes connection, sends FIN
(~ DC-PDU)

client

FIN

server

ACK

ACK

FIN

close

close

closed

tim
e

d
w

a
it

84Telematics I (SS 2024): 08 – Transport Layer

TCP Connection Management (3)

Step 3:

Client receives FIN, replies with
ACK.

 Enters “timed wait” - will
respond with ACK to
received FINs

Step 4:

Server, receives ACK.
Connection closed

Note:

With small modification, can
handle simultaneous FINs

client

FIN

server

ACK

ACK

FIN

closing

closing

closed

tim
e

d
w

a
it

closed

85Telematics I (SS 2024): 08 – Transport Layer

A TCP Connection in all Three Phases

 Connection Establishement
 3-Way-Handshake
 Negotiation of window size and

sequence numbers

 Data transfer
 Piggybacking of

acknowlegements

 Connection Release
 Confirmed (!)
 Avoids loss of data that has

already been sent

Client Server
[SYN, seq=17]

[SYN, seq=39, ACK=18]

[seq=18, ACK=40]

Connection
Establishment

[seq=53, ACK=78, data=‚hi‘]

[seq=78, ACK=55, data=‚ho‘]
Data
Transfer

Connection
Release

[FIN]

[ACK]

[ACK]

[FIN]

T
im

e
 w

a
it

86Telematics I (SS 2024): 08 – Transport Layer

TCP Connection Management: State Transitions

TCP Client
Lifecycle

TCP Server
Lifecycle

87Telematics I (SS 2024): 08 – Transport Layer

TCP Connection Management: State Diagram

CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/ SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close/FIN

FIN/ACKClose /FIN

FIN/ACKACK + FIN/ACK
Timeout after two
segment lifetimes

FIN/ACK

ACK

ACK

ACK

Close/FIN

Close

CLOSED

Active open /SYNStimulus / Reaction
(e.g. Receive / Send)

Note: some states are “superstates”, actually
containing their own state machine

88Telematics I (SS 2024): 08 – Transport Layer

Chapter Overview

 Transport Layer Services and Protocols
 Addressing and Multiplexing
 Connection Control
 Flow Control
 Congestion Control
 Transport protocols in the Internet:

 User Datagram Protocol (UDP)
 Transport Control Protocol (TCP)

 Connection Management
 Reliable Data Transfer
 Flow Control
 Congestion Control
 Performance

89Telematics I (SS 2024): 08 – Transport Layer

TCP Reliable Data Transfer

 TCP creates reliable data
service on top of IP’s
unreliable service

 Pipelined segments
 Cumulative acks
 TCP uses single

retransmission timer

 Retransmissions are
triggered by:

 Timeout events
 Duplicate ACKs

 Initially, we consider a
simplified TCP sender:

 Ignore duplicate acks
 Ignore flow control,

congestion control

90Telematics I (SS 2024): 08 – Transport Layer

TCP Sender Events:

Data received from
application:
 Create segment with seq #
 Seq # is byte-stream

number of first data byte in
 segment

 Start timer if not already
running (think of timer as
for oldest unacked
segment)

 Expiration interval:
TimeOutInterval

Timeout:
 Retransmit segment that

caused timeout
 Restart timer

 Ack received:
 If it acknowledges

previously unacked
segments

 Update what is known to
be acked

 Start timer if there are
outstanding segments

91Telematics I (SS 2024): 08 – Transport Layer

TCP
Sender
(simplified)

 NextSeqNum = InitialSeqNum
 SendBase = InitialSeqNum
 loop (forever) {
 switch(event)
 event: data received from application above
 create TCP segment with sequence number NextSeqNum
 if (timer currently not running)
 start timer
 pass segment to IP
 NextSeqNum = NextSeqNum + length(data)

 event: timer timeout
 retransmit not-yet-acknowledged segment with
 smallest sequence number
 start timer

 event: ACK received, with ACK field value of y
 if (y > SendBase) {
 SendBase = y
 if (there are currently not-yet-acknowledged segments)
 start timer
 }

 } /* end of loop forever */

Comments:

 SendBase-1:
last cumulatively
ack’ed byte

(so SendBase is
next expected pkt)

Example:

 SendBase = 72;
y= 73, so the rcvr
wants 73+ ;
y > SendBase, so
that new data is
acked

92Telematics I (SS 2024): 08 – Transport Layer

TCP: Retransmission Scenarios

Host A

Seq=100, 20 bytes data

ACK=100

time
premature timeout

Host B

Seq=92, 8 bytes data

ACK=120

Seq=92, 8 bytes data

S
e

q
=

9
2

 t
im

e
o

u
t

ACK=120

Host A

Seq=92, 8 bytes data

ACK=100

loss

tim
eo

ut

lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

time

S
e

q
=

9
2

 t
im

e
o

u
t

SendBase
= 100

SendBase
= 120

SendBase
= 120

Sendbase
= 100

93Telematics I (SS 2024): 08 – Transport Layer

TCP Retransmission Scenarios (more)

Host A

Seq=92, 8 bytes data

ACK=100

loss
tim

eo
ut

Cumulative ACK scenario

Host B

X

Seq=100, 20 bytes data

ACK=120

time

SendBase
= 120

94Telematics I (SS 2024): 08 – Transport Layer

TCP ACK Generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that
partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative
ACK, ACKing both in-order segments

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Immediate send ACK, provided that
segment starts at lower end of gap

95Telematics I (SS 2024): 08 – Transport Layer

Fast Retransmit

 Time-out period often
relatively long:

 Long delay before
resending lost packet

 Detect lost segments via
duplicate ACKs.

 Sender often sends many
segments back-to-back

 If segment is lost, there
will likely be many
duplicate ACKs.

 If sender receives 3 ACKs
for the same data, it
supposes that segment
after ACKed data was lost:

 Fast retransmit: resend
segment before timer
expires

96Telematics I (SS 2024): 08 – Transport Layer

 event: ACK received, with ACK field value of y
 if (y > SendBase) {
 SendBase = y
 if (there are currently not-yet-acknowledged segments)
 start timer
 }
 else {
 increment count of dup ACKs received for y
 if (count of dup ACKs received for y = 3) {
 resend segment with sequence number y
 }

Fast Retransmit Algorithm:

a duplicate ACK for
already ACKed segment fast retransmit

97Telematics I (SS 2024): 08 – Transport Layer

Chapter Overview

 Transport Layer Services and Protocols
 Addressing and Multiplexing
 Connection Control
 Flow Control
 Congestion Control
 Transport protocols in the Internet:

 User Datagram Protocol (UDP)
 Transport Control Protocol (TCP)

 Connection Management
 Reliable Data Transfer
 Flow Control
 Congestion Control
 Performance

98Telematics I (SS 2024): 08 – Transport Layer

Send and Receive Buffers in TCP

 TCP maintains buffer at:
 Sender, to service for error control
 Receiver, to store packets not yet retrieved by application or

received out of order
 Old TCP implementations used GoBack-N, and discarded out-

of-order packets

Sending application

LastByteWritten
TCP

LastByteSentLastByteAcked

Receiving application

LastByteRead
TCP

LastByteRcvdNextByteExpected

Sender Receiver

99Telematics I (SS 2024): 08 – Transport Layer

TCP Flow Control: Advertised Window

 In TCP, receiver can advertise size of its receiving buffer
 Buffer space occupied:

(NextByteExpected-1) – LastByteRead

 Maximum buffer space available: MaxRcvdBuffer

 Advertised buffer space (Advertised window):

MaxRcvdBuffer – ((NextByteExpected-1) – LastByteRead)

 Recall: Advertised window limits the amount of data that a sender will
inject into the network
 TCP sender ensures that:

LastByteSent – LastByteAcked AdvertisedWindow

 Equivalently:

EffectiveWindow = AdvertisedWindow – (LastByteSent - LastByteAcked)

100Telematics I (SS 2024): 08 – Transport Layer

Nagle’s Algorithm – Self-Clocking and Windows

 TCP self-clocking: Arrival of an ACK is an indication that new
data can be injected into the network (see also later)

 What happens when an ACK for only small amount of data
(e.g., 1 byte arrives)?
 Send immediately? Network will be burdened by small packets

(“silly window syndrome”)
 Nagle’s algorithm describes how much data TCP is allowed to

send
 When application produces data to send

if both available data and advertised window MSS
 send a full segment
else
 if there is unacked data in flight, buffer new data until MSS is full
 else send all the new data now

101Telematics I (SS 2024): 08 – Transport Layer

Chapter Overview

 Transport Layer Services and Protocols
 Addressing and Multiplexing
 Connection Control
 Flow Control
 Congestion Control
 Transport protocols in the Internet:

 User Datagram Protocol (UDP)
 Transport Control Protocol (TCP)

 Connection Management
 Reliable Data Transfer
 Flow Control
 Congestion Control
 Performance

102Telematics I (SS 2024): 08 – Transport Layer

Congestion Control in TCP

 TCP’s mechanism for congestion control
 Implicit feedback by dropped packets

 Whether the packets were dropped because queues were full or
by a mechanism like RED is indistinguishable (and immaterial) to
TCP

 There are some proposals for explicit router feedback as well, but
not part of original TCP

 Assumption: Congestion is the only important source of packet
drops!

 Window-based congestion control:
 I.e., TCP keeps track of how many bytes it is allowed to inject into

the network as a window that grows and shrinks
 Sender limits transmission (in addition to limit due to flow control):

LastByteSent - LastByteAcked CongWin

Note: in the following discussion the flow control window will be ignored

103Telematics I (SS 2024): 08 – Transport Layer

TCP ACK/Self-Clocking

 Suppose TCP has somehow determined a correct size of its
congestion window
 Suppose also that the TCP source has injected this entire

amount of data into the network but still has more data to
send

 When to send more data?
 Only acceptable when there is space in the network again
 Space is available when packets leave the network
 Sender can learn about packets leaving the network by

receiving an acknowledgement!
 Thus: ACK not only serves as a confirmation, but also as a

permit to inject a corresponding amount of data into the
network

 ! ACK-clocking (self-clocking) behavior of TCP

104Telematics I (SS 2024): 08 – Transport Layer

Good and Bad News

 Good news: ACK arrival
 Network could cope with the currently offered load; it did not

drop the packet
 Let’s be greedy and try to offer a bit more load – and see if it

works

 Increase congestion window

 Bad news: No ACK, timeout occurs
 Packet has been dropped, network is overloaded
 Put less load onto the network

 Reduce congestion window

105Telematics I (SS 2024): 08 – Transport Layer

Reduce Congestion Window by How Much?

 Overloaded network is bad situation – quick and drastic
response necessary

 Upon timeout, cut congestion window in half
 Reduce load by 50%
 A minimum congestion window of one packet is always

allowed

 A multiplicative decrease

 If a packet happens to be dropped because of a transmission
error (not due to overload), TCP misinterprets and overreacts
 But this is a rare occurrence in wired networks
 Leads to various problems in wireless networks

106Telematics I (SS 2024): 08 – Transport Layer

Increase Congestion Window by How Much?

 When increasing congestion window, sender cannot be sure
that additional capacity is actually available
 Asymmetric situation to decreasing of congestion window!

 Hence: Be careful, only increase a little!
 Think in term of round trip times (RTT)
 If all packets sent out within the last RTT arrived,

try to send one more packet per RTT
 There’s a little bit of rounding up involved to

account for packet generation times

 This adds constant amounts of load:
additive increase

Source Destination

…

107Telematics I (SS 2024): 08 – Transport Layer

Additive Increase – Details

 Additive increase does not wait for a full RTT before it adds
additional load

 Instead, each arriving ACK is used to add a little more load (not
a full packet)

 Specifically:
 Increment = MSS x (MSS / Congestion Window)
 Congestion Window += Increment

 Where MSS is the Maximum Segment Size, the size of the
largest allowed packet

108Telematics I (SS 2024): 08 – Transport Layer

AIMD – Sawtooth Pattern of TCP’s Offered Load

 In summary: TCP uses an additive increase multiplicative
decrease (AIMD) scheme

 Consequence
 A TCP connection perpetually probes the network to check for

additional bandwidth
 Will repeatedly exceed it and fall back, owing to multiplicative

decrease
 Sawtooth pattern of TCP’s congestion window/offered load

 This is simplified; we have to introduce one more mechanism!
60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

K
B

Time (seconds)

70

30
40
50

10

10.0C
on

g
es

tio
n

w
in

do
w

109Telematics I (SS 2024): 08 – Transport Layer

Quickly Initialize a Connection: Slow Start

 Additive increase nice and well when operating
close to network capacity

 But takes a long time to converge to it for a new
connection
 Starting at congestion window of, say, 1 or 2

 Idea: Quickly ramp up the congestion window in
such an initialization phase
 One option: double congestion window each

RTT

 Equivalently: add one packet per ACK
 Instead of just adding a single packet per

RTT

Source Destination

Name “slow start” is historic – it was slow com-
pared to some earlier, too aggressive scheme

110Telematics I (SS 2024): 08 – Transport Layer

Leaving Slow Start

 When doubling congestion window, network capacity will
eventually be exceeded

 Packet loss and timeout will result
 Congestion window is halved and TCP switches to “normal”,

linear increase of congestion window
 The “congestion avoidance” phase

111Telematics I (SS 2024): 08 – Transport Layer

Remaining Problem: Packet Bursts

 Congestion control scheme so far: Nice and well,
but one problematic case remains

 Suppose
 A sender transmits its full congestion window
 Packets arrive, acknowledgements are lost
 Timeout occurs, CW is halved
 One packet is retransmitted
 Cumulative acknowledgement for all

outstanding packets arrives

 Sender will then transmit an entire (halved)
congestion window worth of data in a single
burst! ACK clocking is missing!

 Not good! Many packet losses!

ACK 7P1

ACK 7
CW:=CW/2

112Telematics I (SS 2024): 08 – Transport Layer

Solution: Use Slow Start Here As Well

 Avoiding such packet bursts by linearly increasing CW too slow
 We can use the slow start mechanism to get the ACK flow

going again

 Reset the congestion window to 1, restart slow start
 In addition: we have some rough idea of what the network’s

capacity is!
 When initializing a connection, no idea – have to wait for the

first packet loss
 Here: the previous, halved congestion window is a relatively

good guess!
 We can avoid the next packet loss by using the previous

congestion window as a congestion threshold

 Use slow start’s exponential growth until congestion threshold
is reached, then switch to additive increase

113Telematics I (SS 2024): 08 – Transport Layer

TCP Congestion Window Dynamics

Slow
start

Additive
increase,
congestion
avoidance

New slow start
to new

threshold, then
linear increase

20=40/2

Reset CW
to 1, new

threshold =
CW/2

Initial
congestion
threshold

Initial
congestion

window
size

114Telematics I (SS 2024): 08 – Transport Layer

Summary: TCP Congestion Control

 When CongWin is below Threshold, sender in slow-start
phase, window grows exponentially.

 When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

 When a triple duplicate ACK occurs, Threshold set to
CongWin/2 and CongWin set to Threshold.

 When timeout occurs, Threshold set to CongWin/2 and
CongWin is set to 1 MSS.

115Telematics I (SS 2024): 08 – Transport Layer

Summary: TCP Sender Congestion Control

CongWin and Threshold not
changed

Increment duplicate ACK count for
segment being acked

SS or CADuplicate ACK

Enter slow startThreshold = CongWin/2,
CongWin = 1 MSS,
Set state to “Slow Start”

SS or CATimeout

Fast recovery, implementing
multiplicative decrease.
CongWin will not drop below
1 MSS.

Threshold = CongWin/2,
CongWin = Threshold,
Set state to “Congestion
Avoidance”

SS or CALoss event
detected by
triple
duplicate ACK

Additive increase, resulting in
increase of CongWin by 1
MSS every RTT

CongWin = CongWin+MSS *
(MSS/CongWin)

Congestion
Avoidance
(CA)

ACK receipt
for previously
unacked data

Resulting in a doubling of
CongWin every RTT

CongWin = CongWin + MSS,
If (CongWin > Threshold)
 set state to “Congestion
Avoidance”

Slow Start
(SS)

ACK receipt
for previously
unacked data

CommentaryTCP Sender Action StateEvent

116Telematics I (SS 2024): 08 – Transport Layer

Summary (one more): TCP Congestion Control

 This description still glosses over some (minor) details, but
captures the essence

 Extensions to TCP: Fast retransmit, fast recovery
 Take corrective actions without having to wait for a timeout
 Necessary for large delay*data rate networks

 Different TCP versions: TCP Tahoe, TCP Reno, TCP Vegas
 Main difference is the congestion control
 Correct interoperation is a tricky question (e.g., fairness)
 Complicated dynamics

 Main source of complications: Stupidity of the network

117Telematics I (SS 2024): 08 – Transport Layer

Short Advertisement For Those Who Want More On This...

 There is a specific project seminar “Simulative Evaluation of
Internet Protocol Functions” on performance evaluation of
Internet protocol functions

 It is designed to give you a “hands-on” experience with network
protocol functions and simulation studies:
 Introduces a simulation environment and lets you add protocol

functionality

 Studied protocol functions: forwarding, routing, (interface queues),
connection setup, error-, flow- and congestion control

 Requires good programming skills

 Knowledge of C++ is an asset (but not a pre-requisite)

 Allows you to obtain in-depth knowledge of topics covered in
Telematics I and the techniques and art of simulation studies –
because afterwards “you did it!” :o)

118Telematics I (SS 2024): 08 – Transport Layer

Example: Evaluation of TCP Congestion Control

119Telematics I (SS 2024): 08 – Transport Layer

Chapter Overview

 Transport Layer Services and Protocols
 Addressing and Multiplexing
 Connection Control
 Flow Control
 Congestion Control
 Transport protocols in the Internet:

 User Datagram Protocol (UDP)
 Transport Control Protocol (TCP)

 Connection Management
 Reliable Data Transfer
 Flow Control
 Congestion Control
 Performance

120Telematics I (SS 2024): 08 – Transport Layer

TCP Throughput

 What’s the average throughout of TCP as a function of window size
and RTT?

 For the sake of simplicity, let us ignore slow start

 Let W be the window size when loss occurs.

 When window is W, throughput is W/RTT

 Just after loss, window drops to W/2, throughput to W/2RTT.

 Average throughput: .75 W/RTT

121Telematics I (SS 2024): 08 – Transport Layer

Fairness goal: If K TCP sessions share same bottleneck link
of bandwidth R, each should have average rate of R/K

TCP connection 1

bottleneck
router

capacity R

TCP
connection 2

TCP Fairness

122Telematics I (SS 2024): 08 – Transport Layer

Why is TCP fair?

Two competing sessions:
 Additive increase gives slope of 1, as throughout increases
 Multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

C
on

ne
c t

io
n

2
th

r o
u g

h
p u

t

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

123Telematics I (SS 2024): 08 – Transport Layer

Fairness (more)

Fairness and UDP

 Multimedia apps often do
not use TCP:

 Do not want rate throttled
by congestion control

 Instead use UDP:
 Pump audio/video at

constant rate, tolerate
packet loss

 Research area: TCP
friendly

Fairness and parallel TCP
connections

 Nothing prevents applications
from opening parallel
connections between 2 hosts.

 Web browsers do this
 Example: link of rate R

supporting 9 connections;
 New application asks for 1

TCP, gets rate R/10
 New application asks for 9

TCPs, gets R/2 !

124Telematics I (SS 2024): 08 – Transport Layer

Delay Modeling

Question:

 How long does it take to receive
an object from a Web server after
sending a request?

 Ignoring congestion, delay is
influenced by:

 TCP connection
establishment

 Data transmission delay
 Slow start

Notations & Assumptions:

 Assume one link between
client and server of rate R

 S: MSS (max. segment size,
bits)

 O: object size (bits)
 No retransmissions (no loss,

no corruption)

Window size:
 First assume: fixed

congestion window, W
segments

 Then dynamic window,
modeling slow start

125Telematics I (SS 2024): 08 – Transport Layer

Fixed Congestion Window (1)

First case:
WS/R > RTT + S/R: ACK for first
segment in window returns before
window’s worth of data sent

delay = 2RTT + O/R

126Telematics I (SS 2024): 08 – Transport Layer

Fixed Congestion Window (2)

Second case:
 WS/R < RTT + S/R: wait for

ACK after sending window’s
worth of data sent

delay = 2RTT + O/R
+ (K-1)[S/R + RTT - WS/R]

127Telematics I (SS 2024): 08 – Transport Layer

TCP Delay Modeling: Slow Start (1)

Now suppose window grows according to slow start

We will show that the delay for one object is:

Latency=2RTT +O
R

+P[RTT+ S
R]−(2P−1) S

R

where P is the number of times TCP idles at server:

P=min {Q , K−1}

- where Q is the number of times the server idles
 if the object were of infinite size.

- and K is the number of windows that cover the object.

128Telematics I (SS 2024): 08 – Transport Layer

TCP Delay Modeling: Slow Start (2)

RTT

initia te TCP
connection

request
object

first w indow
= S /R

second w indow
= 2S/R

third w indow
= 4S/R

fourth w indow
= 8S/R

com plete
transm issionobject

delivered

tim e at
c lient

tim e at
server

Example:
 O/S = 15 segments
 K = 4 windows
 Q = 2
 P = min{K-1,Q} = 2

 Server idles P=2
times

Delay components:
 2 RTT for connection

estab. and request
 O/R to transmit object
 time server idles due to

slow start

 Server idles:
P = min{K-1,Q} times

129Telematics I (SS 2024): 08 – Transport Layer

TCP Delay Modeling (3)

delay=O
R

+2RTT+∑
p=1

P

idleTime p

=O
R

+2RTT +∑
k=1

P

[S
R

+RTT−2k−1S
R

]

=
O
R

+2RTT +P [RTT+S
R

]−(2P−1)S
R

[SR+RTT−2k−1 S
R]

+

= idle time after the k th window

S
R

+RTT= time from when server starts to send segment

 until server receives acknowledgement

2k−1 S
R

=time to transmit the kth window

RTT

initia te TCP
connection

request
object

first w indow
= S /R

second w indow
= 2S/R

third w indow
= 4S/R

fourth w indow
= 8S/R

com plete
transm issionobject

delivered

tim e at
c lient

tim e at
server

130Telematics I (SS 2024): 08 – Transport Layer

TCP Delay Modeling (4)

K = min {k : 20 S+21S+⋯+2k−1S≥O}
 = min {k : 20+21+⋯+2k−1≥O /S}

 = min {k : 2k−1≥O
S

}

 = min {k :k≥log2(
O
S

+1)}

 = ⌈ log2(
O
S

+1)⌉

Calculation of Q, number of idles for infinite-size object, is similar

Recall K = number of windows that cover object

How do we calculate K ?

131Telematics I (SS 2024): 08 – Transport Layer

Chapter Summary

 Principles behind transport layer services:
 Addressing, multiplexing, demultiplexing
 Connection control
 Flow control
 Congestion control

 Instantiation and implementation in the Internet:
 UDP
 TCP

 As we have seen, in TCP three important protocol functions are
implemented “altogether” in one sliding window protocol:

 Error control: by sequence numbers, ACKs & retransmissions
 Flow control: by looking at acknowledgements and permits (& seqnums)
 Congestion control: by further slowing down the sender if packets or

ACKs get lost (assumption: packets mainly get lost because of
congestion!)

132Telematics I (SS 2024): 08 – Transport Layer

Additional References

[KR04] J. F. Kurose & K. W. Ross, Computer Networking: A Top-Down
Approach Featuring the Internet, 2004, 3rd edition, Addison Wesley

[Kar04] H. Karl. Communication Networks Chapter 8: Congestion Control.
course slides, University of Paderborn, Germany, 2004.
http://wwwcs.upb.de/cs/ag-karl/teaching/ws0405/vl-rnetze.html

[Sch04] J. Schiller. Telematik. Vorlesungsfolien, Freie Universität Berlin, 2004.
http://www.inf.fu-berlin.de/inst/ag-tech/teaching/LehreFUSeiten/WS03/19545-V/
index.html

[Tan02] A. S. Tanenbaum. Computer Networks. 4th edition, Prentice Hall, 2002.

