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Abstract—Current data centers host an ever increasing number
of data analytics applications who are dealing with a growing
number of data sources and a continuously increasing volume
of data. Parallel stream processing is a powerful paradigm
supporting the large-scale deployment of data-analytics appli-
cations. However, its performance is limited by its processing
capacity of splitting the data streams into parallelizable sub-
streams. The splitter that is traditionally executed on general-
purpose computational resources can benefit from in-network
computing nodes on the communication path. Programmable
data planes and corresponding programming models, e.g., Pro-
gramming Protocol-independent Packet Processors (P4), offer
the flexibility of enabling distinct parallelization semantics that
can be individually adapted to the dynamic workload. In this
paper, we propose Stateful and Scalable Splitter Switch (S4),
a network-centric approach leveraging P4 to support parallel
stream processing. S4 supports up to 286k concurrent data
streams, with a parallelism degree of up to ∼ 500k operator
instances and a latency overhead of only 2µs.

Index Terms—In-Network Computing, P4, Parallel Stream
Processing.

I. INTRODUCTION

Data analytics applications are becoming highly important
in current data centers as they enable the processing of high
volume of data coming from multiple data sources, e.g.,
Internet of Things (IoT) devices. With the growing number of
data sources, it becomes increasingly challenging to ingest the
rising volume of data, e.g., sensor measurements, training data
for Machine Learning (ML) models. In this context, parallel
stream processing is an important paradigm for enabling large
scale deployments of data analytics applications. Particularly,
data parallelism [1] is a very prominent mechanism in stream
processing engines such as Apache Flink [2]. It is commonly
achieved by the splitter-merger model [16] where the splitter
divides the incoming event streams into parallelizable sub-
streams called windows. Then, the splitter distributes the
windows of events over a set of operator instances. A window
is a finite set of events and it represents a fundamental building
block in stream processing.

The efficient splitting of the various data streams into
windows is crucial for the overall performance of the data-
analytics application, especially when the computation results
are expected in real-time. As the workload increases, it is
essential that the splitter manages a higher ingestion rate
when the data streams arrive at line rate. Moreover, current

data centers host multiple data-analytics applications, each
with its own parallelization needs. Therefore, scaling to a
large number of concurrent data streams with specialized
windowing semantics is key. It is also important to adapt
the parallelism degree for supporting more operator instances
without redeploying the entire system. However, increasing
the number of operator instances is pointless when the splitter
performance is the bottleneck. In fact, state-of-the-art stream
processing engines implement the splitter on general-purpose
computational resources where the splitter throughput for a
given data analytics application is around 800k events per
second with a parallelism of 256 operator instances [3].

Instead, network specialized resources in today’s data cen-
ters can support the splitter to meet the requirements of
enabling distinct window-based parallelization semantics and
scaling them individually. For this purpose, we propose using
Software-Defined Networking (SDN) and In-Network Com-
puting (INC) [23] as it has the potential to accelerate the
performance of the splitter as a network function. With
emerging programmable data planes, in-network nodes can
be specifically programmed for customized functions, making
them appealing targets to experiment with novel use cases.
For instance, since the advent of the P4 programming lan-
guage [4], there have been tremendous innovations with new
protocols and various domains of in-network applications,
e.g., consensus [5], machine learning [6] and caching [7]. An
important motivation for in-network computing is to reduce
end-to-end latency by shorter communication paths, save net-
work bandwidth [24], and benefit from hardware performance.
While P4 programmable switches bring high flexibility for
defining new packet headers and defining dependencies in
packet processing, the programming model has limitations
in expressing in-network computations such as loops and
floating-point operations. Particularly, stateful processing in P4
is challenging [22] but it is essential for the splitter to support
distinct parallelization semantics of multiple data analytics
applications.

Building on in-network computing, we propose S4, a
network-centric approach leveraging P4 to support parallel
stream processing over programmable data planes. We show
with S4 how P4 programmable switch can accelerate the split-
ter function while supporting distinct windowing semantics.
Our main contributions are the following; (1) The proposi-
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Figure 1: Data Parallelization Framework

tion of in-network data parallelization framework supporting
window-based parallel data streams. (2) The development of
data plane algorithms of four essential windowing semantics;
count-based and time-based windows both in the tumbling,
i.e., non-overlapping and sliding, i.e., overlapping mode.
(3) An in-depth analysis of S4 properties in terms of load-
balancing and hardware resources consumption depending on
the window semantics to determine the highest parallelism
degree achievable by S4. (4) A performance evaluation of S4
comprising the analysis of the throughput and measurements
of the latency and the control plane overhead.

II. PARALLEL STREAM PROCESSING

Parallel stream processing is often realized by a data
parallelization framework which relies on the splitter-merger
architecture [16] (Figure 1). First, the splitter receives the
incoming data streams I0...Ik where each stream comprises
an infinite set of events originating from various data sources.
The events usually have timestamps indicating their occurrence
time. The splitter divides the data streams according to a split-
ting strategy employing key-based or window-based methods
[19]. Particularly, window-based processing is essential for
managing large datasets in real-time [11]. Then the windows,
i.e., a finite set of events, are assigned by the splitter to a set
of operator instances ω1, ω2, ...ωN , according to a scheduling
policy. The operator instances are responsible for the paral-
lel execution of local computations over the data partitions,
i.e., windows. Lastly, the merger collects and aggregates the
computation results into an output stream O.

A. Window-based Data Stream Partitioning

In stream processing, windowing represents a powerful
abstraction for enabling the parallel execution of replicated
computations over a subset of the data stream. Window-
based data partitioning can be realized according to differ-
ent windowing semantics. Given the window specification
Σi which comprises the window size ni and window shift
δi for a particular input stream, the splitter partitions the
incoming data stream into windows of events, such as a
window winj is a finite set of n tuples of timestamped
events (e0, t0), (e1, t1)...(en−1, tn−1). There are time-based
and count-based windows both of which can be defined
according to the tumbling windows (non-overlapping) or the
sliding windows (overlapping) model (Figure 2). An example
of windowed operation is a traffic sensor that needs to count
the number of vehicles passing by a particular location every
minute.
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Data Stream

 

Figure 2: Count-based Tumbling Window (n = 4, δ = 4)
and Time-based Sliding Window (n = 4 sec, δ = 2 sec).

B. Window Scheduling and Load-Balancing

Alongside the windowing operation, the splitter performs
the load-balancing of the windows of events among the set
of operator instances. It assigns the windows according to a
scheduling mechanism such as Round Robin (RR) or Weighted
Round Robin (WRR). The number of operator instances man-
aged by the splitter represents the parallelism degree N and
is a key indicator of the splitter performance and the scaling
capacity of the streaming system. As the workload increases,
additional operator instances may be deployed to increase the
system throughput and reduce its latency. Therefore, having
an adaptive splitter that allows the dynamic reconfiguration of
the parallelism degree N is an essential property.

III. DESIGN OVERVIEW AND SYSTEM REQUIREMENTS

In this section, we give the design overview of the pro-
posed in-network data parallelization framework and describe
corresponding system requirements.

A. Design Overview

Our proposed in-network data parallelization framework is
presented in Figure 3. Multiple data analytics applications are
assigned to distinct input streams. A P4 programmable switch
called S4 (Stateful and Scalable Splitter Switch) receives the
incoming streams on its ingress ports and executes the line-rate
forwarding of events while performing the splitting function
(windowing and load-balancing). S4 enables the individual
configurations of the distinct application streams allowing for
each of the data analytics applications independent window
semantics. Each input stream Ii is associated with a custom
windowing semantic expressed by the window specification
Σi. In S4, an event ei corresponds to a packet carrying a
timestamp ti of the event occurrence time. Events belonging
to the same application have the same event type, e.g.,
temperature, humidity. Similar to the traditional model, the
operator instances are processes executed on general-purpose
computational resources, i.e., servers. The data parallelization
configurations (window specification Σ and parallelism degree
N ) for each installed stream and associated operator instances
are provided to the S4 switch by the SDN controller via
the control plane interface. The stream processing engine
managing the various data analytics applications monitors the
dynamic workload and the state of the operator instances
to adjust the parallelism degree accordingly in the form of
updated configuration.
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Figure 3: In-network Parallel Stream Processing with P4
Programmable Switch.

B. System Requirements

S4 enables line-rate decisions for each incoming packet to
be mapped to a specific set of windows and then forwards it
to one or multiple operator instances. With tumbling windows,
an event belongs to a single window and is forwarded to
a single operator. While in the case of sliding windows an
event belongs to multiple simultaneously active windows and
must be forwarded to corresponding sets of parallel operators.
As event packets are received, S4 updates the window state
dependent on the concrete window semantic. S4 must ensure
a consistent partitioning and mapping of the data stream
such that all events in a given window winj are consistently
assigned to the same operator instance ωk. A key challenge
for the proposed approach results from the required state
management with respect to each of the configured streams.
Therefore, S4 builds on the P4 pipeline resources, i.e., Match-
Action Tables (MAT), Packet Replication Engine (PRE) and
particularly those supporting stateful processing i.e., registers,
to process incoming events and update the progress of active
windows related to each individual stream. Moreover, to adapt
to the dynamic workload S4 must enable the dynamic changes
to the configured streams and their parallelization degree.

In the remainder of the paper, we aim to determine concrete
algorithms that ensure consistent updates of the following four
central windowing semantics, Count-Based Tumbling Window
(CBTW), Count-Based Sliding Window (CBSW), Time-Based
Tumbling Window (TBTW) and Time-Based Sliding Window
(TBSW).

IV. STATEFUL AND SCALABLE SPLITTER SWITCH

In this section, first we describe the data plane pipeline
processing of S4. Then, we present the four data plane
algorithms of the window-based data stream partitioning.

A. S4 Data Plane Pipeline Processing

An overview of S4 pipeline processing is presented in
Figure 4. An input data stream is expected to arrive at a
given ingress port of the P4 switch. We use the ingress port
ID along with the event type in a MAT lookup to assign a
Stream ID to the event upon its reception. In the same MAT,
the window type, i.e., count-based or time-based, and the
window specification parameters, e.g., Σ(n, δ) for count-based
windows or Σ(∆, τ) for time-based windows, are also set as
action data and later used as user metadata in the remainder
of the pipeline. A following MAT lookup uses the Stream
ID as a key to retrieve the parallelism degree N which is
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Figure 4: S4 Data Plane Pipeline Processing

done separately from the window specification so that for each
input stream both can be updated independently. The window
specification parameters and the parallelism degree are defined
as action data configurable by the control plane so they can
be updated dynamically at run-time. Hence, an update to the
window specification Σ or the parallelism degree N does not
require a recompilation of the P4 program. Once the window
parameters are retrieved, S4 pipeline processing enters one of
the following control blocks: Algorithm 1 (CBTW), Algorithm
2 (CBSW), Algorithm 3 (TBTW), and Algorithm 4 (TBSW).

Performing the window-based data stream splitting logic
in the data plane requires keeping the state of the windows
and their mapping to the destination operators throughout the
window lifetime for non-overlapping windows and the state
of multiple concurrent windows to a set of operator instances
for sliding windows. For this purpose, we rely on the use of
registers in P4 as they can be modified from within the data
plane and the stored values are persisted beyond the life of a
packet. We use the Stream ID as the index to access the various
register elements associated with a particular data stream.
Thus, the state management is done in isolation for each of the
configured streams. In the case of non-overlapping windows
the output of corresponding processing blocks (Algorithm 1
and 3) is an Operator ID which is then mapped to an egress
port ID. In the case of overlapping windows (Algorithm 2
and 4), an event can be part of multiple simultaneously active
windows, each of which is mapped to a different operator
instance. Therefore, packet replication is required so that the
event packet is multicast towards respective operators. The
output of associated processing block is a Multicast Group ID
with a configuration comprising the output ports mapped to
the set of operator instances involved with the ongoing active
windows. The pipeline processing finishes by updating the
source and destination Media Access Control Address (MAC)
addresses based on the destination operator and the switch
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egress port.

B. S4 Window-based Data Stream Partitioning

1) Count-based Tumbling Windows (Algorithm 1): With
non-overlapping count-based windows, we have n ≤ δ. We
define two registers arrays (i) position reg for tracking the
total number of received packets within the current window.
(ii) operator reg for keeping the latest operator ID, to which
the currently active window is assigned. When an event is
received, the position reg element identified by the Stream
ID is incremented by 1. Then, a check if a new window has
started would trigger advancing the operator reg by 1 until
it reaches the maximum number of operator instances N in
which case, it is reset to 0. Otherwise, if the event is part of
the current window, then the Operator ID remains the same
as the previous packet, and its value is retrieved from the
operator reg register. A MAT lookup is then performed based
on the operator ID and the Stream ID to retrieve the egress
port ID.

Algorithm 1 Count-based Tumbling Windows
Require: Stream ID idx, parallelism degree N , window size n,

window shift δ, n ≤ δ.
Ensure: Setting the egress port ID based on the Operator ID.

1 procedure POSITIONREGACTION(positionReg, idx)
2 if (value < δ − 1) then
3 value← value+ 1; flag ← 0;
4 else
5 value← 0; flag ← 1;
6 end if
7 return flag;
8 end procedure
9 procedure OPERATORREGACTION(operatorReg, idx)

10 if (value < N − 1) then
11 value← value+ 1;
12 else
13 value← 0;
14 end if
15 return value;
16 end procedure
17 n, δ, idx← windowSpecTable(igPort, hdr.event.type)
18 N ← streamIDtoMaxOperatorNumTable(idx)
19 newWindow ← positionRegAction(idx)
20 if newWindow == 1 then
21 ω ← operatorRegAction(idx)
22 else
23 ω ← operatorReg.read(idx)
24 pos← positionReg.read(idx)
25 end if
26 portID ← operatorIDtoPortIDmappingTable(idx, ω)

2) Count-based Sliding Windows (Algorithm 2): With
overlapping count-based windows (n > δ), we need an
additional register overlap reg for tracking the overlap de-
gree among the currently active windows. We also define a
MAT slidingWindows to set the mapping of the overlapping
windows to the corresponding set of operator instances. To
understand sliding windows from the data plane point of
view let’s consider the case when δ = 1. Then for every
incoming event, a new window is created and assigned to the
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Figure 5: Count-based Sliding Windows with Σ(n = 4, δ = 1)
and N = 5.

idx latest Op. Overlap Op. Inst. Mcast Group ID
0x123 ω0 0 ω0 -
0x123 ω1 1 ω0, ω1 1
0x123 ω2 2 ω0, ω1, ω2 2
0x123 ω3 3 ω0, ω1, ω2, ω3 3
0x123 ω4 3 ω1, ω2, ω3, ω4 4
0x123 ω0 3 ω2, ω3, ω4, ω0 5
0x123 ω1 3 ω3, ω4, ω0, ω1 6
0x123 ω2 3 ω4, ω0, ω1, ω2 7
0x123 ω3 3 ω0, ω1, ω2, ω3 3

Table I: Round-Robin window load-balancing over 5 operator
instances with Σ(n = 4, δ = 1).

next operator (assuming a round-robin scheduling). Given the
example illustrated in Figure 5 where Stream ID 0x123 is
partitioned according to n = 4, δ = 1 and distributed among
N = 5. For the first received event, there is no overlap and
the packet must be sent only to the first operator ω0. However,
starting from the second event, the window overlap begins
and the event must be sent to operator ω0 and ω1, then the
next packet is sent to operator ω0, ω1 and ω2 and so on as
described in Table I. To express this behaviour, the overlap reg
is used for tracking the current overlap degree. In the given
example, the overlap degree starts at 0, then it is incremented
by 1 for each incoming packet until it reaches a maximum
overlap value maxOverlap = n− δ. We call this process the
start-up phase. Then, we use the overlap degree along with
the stream ID and the latest operator ID as a lookup key in
the slidingWindows MAT to apply one of these actions; (1)
unicast forwarding by setting the egress port ID so the event
packet is sent to a single operator (first entry in Table I) (2)
multicast forwarding for replicating the event across multiple
operators (the rest of the entries in Table I). Packet replication
is ensured by the traffic manager in the P4 switch, given the
configuration of the multicast tree (multicast group IDs and
associated port members) in accordance with the entries in
the slidingWindows table (see example in Table I).

For the general case of count-based sliding windows when
δ > 1, an additional register is needed for tracking the start
of a new window. We can use the register position reg so
when it reaches the value δ it would trigger the start of a
new window. Then, the other two registers operator reg and
overlap reg will also be advanced.

3) Time-based Tumbling Windows (Algorithm 3): For
non-overlapping time-based windows, a window specification
is given by the window duration ∆ and the window shift τ as
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Algorithm 2 Count-based Sliding Windows
Require: Stream ID idx, parallelism degree N , window size n,

window shift δ, overlap degree, n > δ.
Ensure: Setting the egress portID or Multicast group ID mgID.

1 procedure OVERLAPREGACTION(overlapReg, idx)
2 if (value < maxOverlap) then
3 value← value+ 1;
4 end if
5 return value;
6 end procedure
7 n, δ, idx← windowSpecTable(igPort, hdr.event.type)
8 N ← streamIDtoMaxOperatorNumTable(idx)
9 maxOverlap← n− δ

10 if δ == 1 then
11 ω ← operatorRegAction(idx)
12 overlap← overlapRegAction(idx)
13 end if
14 if δ > 1 then
15 newWindow ← positionRegAction(idx);
16 if newWindow == 1 then
17 ω ← operatorRegAction(idx);
18 overlap← overlapRegAction(idx);
19 else
20 ω ← operatorReg.read(idx);
21 overlap← overlapReg.read(idx);
22 end if
23 end if
24 mgID, portID ← slidingWindows(idx, overlap, ω);

measures of time such as ∆ ≤ τ . For each received event, S4
starts by parsing the event packet header to retrieve the event
timestamp. Assuming an in-order arrival of the events within
a given stream, the event timestamps are discrete and con-
tinuous monotonically increasing integers. For a new window
triggered by the arrival of an event packet with a timestamp
ti, first we compute and save the current window end time as
curr w end time = ti+∆ in the register end time reg, and
the next window starting time as next w start time = ti+τ
in the register start time reg. Note that if ∆ = τ , then
curr w end time = next w start time. Similar to count-
based windows, we use the operator reg register for keeping
the state of the current operator ID. However, unlike count-
based windows, we do not need the position reg, since the
advancement steps are given by the event timestamps rather
than the packet count. When ti ≥ next w start time, then a
new window is created so we start sending to the next operator.

4) Time-based Sliding Windows (Algorithm 4): Overlap-
ping time-based windows are created when ∆ > τ . Same
as with count-based overlapping windows, we use the over-
lap reg to keep track of the current overlap degree. We
define the maximum overlap degree for time-based sliding
windows maxOverlap = ∆

τ . Since there are limitations
to floating point operations in programmable switches, the
maximum overlap degree parameter is given as action data to
be configured along with the window specification and passed
via the control plane interface. The rest of the processing
of how the overlap degree is used is similar to count-based
sliding windows. We also maintain the slidingWindows MAT
where the Stream ID, the latest Operator ID and the current

Algorithm 3 Time-based Tumbling Windows
Require: Stream ID idx, window duration ∆, window shift τ ,

parallelism degree N , ∆ ≤ τ , hdr.event.timestamp.
Ensure: Setting the egress port ID based on the Operator ID.

1 procedure ENDTIMEREGACTION(endT imeReg, idx)
2 if (hdr.event.timestamp >= value) then
3 value← currWinEndT ime; flag ← 1;
4 else
5 flag ← 0;
6 end if
7 return flag;
8 end procedure
9 procedure STARTTIMEREGACTION(startT imeReg, idx)

10 if (hdr.event.timestamp >= value) then
11 value← nextWinStartT ime; flag ← 1;
12 else
13 flag ← 0;
14 end if
15 return value;
16 end procedure
17 procedure CURRSTARTTIMEREGAC-

TION(startT imeReg, idx)
18 value← hdr.event.timestamp;
19 return value;
20 end procedure
21 ∆, τ, idx← windowSpecTable(igPort, hdr.event.type);
22 N ← streamIDtoMaxOperatorNumTable(idx);
23 currWinEndT ime← hdr.event.timestamp+∆;
24 nextWinStartT ime← hdr.event.timestamp+ τ ;
25 windowStops← endT imeRegAction(idx);
26 newWindow ← startT imeRegAction(idx);
27 if newWindow == 1 then
28 ω ← operatorRegAction(idx);
29 currStartT imeRegAction(idx);
30 else
31 ω ← operatorReg.read(idx);
32 currWinStartT ime← startT imeReg.read(idx);
33 end if
34 portID ← operatorIDtoPortIDmappingTable(idx, ω)

overlap degree are used as the lookup key to determine the
outcome action (i) unicast forwarding in case of no-overlap
(ii) multicast forwarding when there is overlap.

V. EVALUATION

In this section, first we analyze the behaviour of S4 in
terms of load distribution (Section V-B1). Then, we study the
hardware resource consumption of S4 on a physical switch,
the Intel Tofino1 switch [8], to identify the highest achievable
parallelism degree and the maximum number of concurrent
data streams for each of the windowing semantics (Section
V-B2). Then, we present the performance measurements of S4
(Section V-B3) in terms of throughput, the latency overhead
and the control plane overhead.

A. Evaluation Setup

The hardware testbed used in S4 evaluation comprises two
Intel Tofino1 switches [8], an APS Networks 8x100Gbps -
48x10 Gbps switch and an EdgeCore 32x100 Gbps switch.

In the first Tofino switch, we deploy the S4 program
which we implemented using P416 programming language
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Algorithm 4 Time-based Sliding Windows
Require: Stream ID idx, window duration ∆, window shift

τ , parallelism degree N , overlap degree, ∆ > τ ,
hdr.event.timestamp.

Ensure: Setting the egress portID or Multicast group ID mgID.
1 ∆, τ, idx← windowSpecTable(igPort, hdr.event.type);
2 N ← streamIDtoMaxOperatorNumTable(idx);
3 maxOverlap← ∆

τ
4 currWinEndT ime← hdr.event.timestamp+∆;
5 nextWinStartT ime← hdr.event.timestamp+ τ ;
6 newWindow ← startT imeRegAction(idx);
7 windowStops← endT imeRegAction(idx);
8 if newWindow == 1 then
9 ω ← operatorRegAction(idx);

10 overlap← overlapRegAction(idx);
11 currStartT imeRegAction(idx);
12 else
13 ω ← operatorReg.read(idx);
14 overlap← overlapReg.read(idx);
15 currWinStartT ime← startT imeReg.read(idx);
16 end if
17 mgID, portID ← slidingWindows(idx, overlap, ω);

[9]. The second Tofino switch is only needed for a subset
of the performance evaluation when we measure S4 latency
overhead. In addition to the Tofino switches, our testbed
comprises three additional rack servers: two 6-cores Intel Xeon
Processor E5-2620 v2 servers which have a 82599ES 10-
Gigabit SFI/SFP+ Intel NIC each and a 10-cores Intel Xeon
Gold 5115 Processor on which we installed two 25-Gigabit
Dual-Port SFP28 Intel E810-XXVAM2-Based Ethernet NICs.
All links are configured at 10 Gbps speed. For traffic gen-
eration we use T-Rex [12], a Data Plane Development Kit
(DPDK)-based [13] Realistic Traffic Generator.

B. Evaluation Results

1) Load Distribution: We define different testing scenarios
where we aim to compare the four windowing semantics in
terms of load-balancing. For each window model, we consider
two configurations with different window specification Σ and
parallelism degree N . Our goal is to determine whether the
window parameters n and δ, or the number of operator
instances N , have an influence on the load distribution. In
each scenario, we instantiate S4 with one of the window
specifications presented in Table II and Table III. We run the
traffic generator T-Rex at full line speed on a 10GbE port.
However, the incoming rate measured on the switch ingress
port is 8.42 Gbps. The incoming data stream consists of UDP
packets with a size of 128 Bytes. The timestamps are generated
in-order as monotonically increasing integers.

The results presented in Figure 6 show the load distribution
over the operator instances for the various window specifica-
tions. It shows that regardless of the window specification Σ
and the parallelism degree N , our S4 implementation provides
even load distribution at line-rate, in the case of overlapping
and non-overlapping windows. We note that the bandwidth
consumption of the sliding windows model is much higher
than those of tumbling windows. Despite the communication
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Figure 6: Load-Distribution over the Operator Instances for
different Window Specifications

Table II: Count-based Window Specifications.

Scenario Window Specification N

cbtw1 Σ(n = 100, δ = 100) N = 6
cbtw2 Σ(n = 10, δ = 10) N = 4
cbsw1 Σ(n = 5, δ = 1) N = 6
cbsw2 Σ(n = 3, δ = 1) N = 4

overhead, sliding windows are essential in use cases defined
by the data analytics application. For example, an application
that computes every day the number of failures of hard drives
in a data center over the past 30 days would implement the
sliding windows operation [10].

2) Hardware Resources Consumption: To understand the
hardware resource usage of our S4 implementation, first we
define a baseline configuration where we set the parallelism
degree N = 64k operator instances, and the number of
concurrent data streams to 32k. First, we use the same
baseline configuration for the different windowing semantics
and we evaluate separately their hardware resources usage. The
estimation of the hardware resources utilization is done with
P4 Insight (p4i), a tool included in the Intel Tofino Software
Development Environment (SDE) which provides the mapping
of the P4 program to the switch hardware resources. Therefore,

Table III: Time-based Window Specifications.

Scenario Window Specification N

tbtw1 Σ(∆ = 1000, τ = 1000) N = 6
tbtw2 Σ(∆ = 2000, τ = 2000) N = 4
tbsw1 Σ(∆ = 1000, τ = 500) N = 6
tbsw2 Σ(∆ = 1500, τ = 500) N = 4
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Figure 7: Hardware Resources Consumption in the S4 Switch Application.

Table IV: S4 Resource Utilization using the Baseline Config-
uration.

Resources cbtw cbsw tbtw tbsw

Registers Arrays 2 3 6 7
Match Tables 12 12 18 20

Stages 6 6 7 8

the resource utilization analysis can be performed offline.
For the baseline configuration, we focus on the following
essential hardware resources as comparative indicators of the
hardware requirements for each of the windowing models (1)
The number of register arrays. (2) The number of MAT tables.
(3) The number of stages in the P4 pipeline.

The hardware resource utilization of our P4-based S4 im-
plementation of each of the windowing semantics using the
baseline configuration is described in Table IV. Note that
Tofino1 has a maximum of 12 stages, beyond which the P4
program would not fit inside the switch. As shown in Table
IV, with the baseline configuration we are below that limit in
the four cases allowing the scaling of S4 beyond 64k operator
instances and 32k concurrent streams. As shown in Table IV,
both count-based tumbling and sliding windows use the least
number of stages of the four windowing semantics as they
both use 12 MAT tables over 6 stages. However, count-based
tumbling windows require an additional register array. Time-
based sliding windows have the longest dependency chain
with 20 MAT tables spread over 8 stages. It also requires
more register arrays (7 register arrays are needed in our
implementation).

In the following part of our analysis, we study how scaling
S4 for larger configurations impacts the hardware resources
utilization inside the switch. Note that our evaluation of S4
hardware resources consumption is performed in stand-alone
with no other networking functions sharing the same switch.
The purpose of this study is to identify for each of the window
models, the upper bound of the parallelism degree of S4 and
how many data streams it can handle concurrently. We can then
identify which of the proposed windowing semantics provides
the best scalability.

For each window model, we start by fixing the number
of concurrent streams to 32k and we vary the parallelism
degree to a higher number of operator instances until all

the stages of the Tofino switch are used. Then, for a fixed
number of operator instances N = 64k, we vary the number
of concurrent streams to the highest possible value after which
the compiler won’t be able to fit the program in the switch.
For each scenario, we track the number of MAT entries and
corresponding memory usage. We provide the memory usage
only in terms of Static Random Access Memory (SRAM) since
in our S4 implementation we do not require any Ternary Con-
tent Addressable Memory (TCAM). According to the results
presented in Figure 7, we conclude that in general count-based
windows offer better scalability than time-based windows.
For both count-based and time-based windows, the tumbling
model offers better scalability and less memory usage than
the sliding windows model. In the best scenario which is
count-based tumbling windows, S4 can accommodate up to
457k operator instances which is 3 orders of magnitude higher
than the software-based solutions, while handling up to 286k
concurrent streams. For time-based windows, we obtain up to
362k operator instances and 65k concurrent streams. For the
highest parallelism degree, we estimate the maximum memory
usage of our implementation to 270 MBytes of SRAM.

3) Performance Evaluation:

a) Throughput: In this experiment, we use T-Rex to
send the traffic to the S4 switch on a 10 Gbps ingress port
and we vary the incoming line rate from 10% to 100% of
the link speed. Then, we measure the aggregated throughput
of the outgoing traffic on the S4 egress ports. We perform
the same measurement for each of the windowing models
cbtw1, cbsw1, tbtw1 and tbsw1, described in Table II
and Table III. In this scenario, we use a packet size of
512 Bytes. The measured incoming rate is 9.55 Gbps when
a 100% of the link speed is set in T-Rex. The obtained
results are presented in Figure 8. First, we note that in
the case of tumbling windows both count-based and time-
based windows have a similar output throughput which is the
same as the incoming throughput. However, in the case of
sliding windows S4 acts as an amplifier, i.e., a throughput
multiplier because of the overlapping windows and associated
packet replication. For instance, with cbsw1, the generated
throughput is 4 times higher than the incoming rate while
with tbsw1, it is 2 times higher. This is explained by the
overlap degree which influences how much the incoming
stream gets amplified as in cbsw1 with Σ(n = 5, δ = 1)
resulting in a maxOverlap = n − δ = 4 and in the case
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Figure 8: Throughput

Measurement cbtw cbsw tbtw tbsw

Avg Latency 1.76 µs 1.86 µs 1.75 µs 1.87 µs
Min Latency 1.72 µs 1.8 µs 1.72 µs 1.83 µs
Max Latency 1.8 µs 1.92 µs 1.8 µs 1.93 µs

Table V: Latency Overhead

of tbsw1 with Σ(∆ = 1000, τ = 500) resulting in a
maxOverlap = ∆/τ = 2. With cbsw1, when the incoming
rate is set at 100%, the total measured outgoing throughput
is 47.76 Gbps which corresponds to 11 millions events per
second for one particular stream.

b) Latency Overhead: The measurement of the latency
overhead in S4 was conducted by using P4 Stamper (P4STA)
[14], [15], a P4-based framework that provides high precision
latency measurements in the data plane with nanoseconds
accuracy. To measure the packet delay in S4 from ingress to
egress, we deploy S4 as the Device Under Test (DUT) on a first
Tofino switch and P4STA on a second Tofino switch. Both are
directly connected, such as P4STA is placed between T-Rex,
the traffic generator and our S4 switch. To compute the latency,
P4STA augments the original traffic with local timestamps on
the way in and out of S4. We perform this experiment for
each of the windowing semantics. The obtained results from
P4STA are presented in Table V. We observe that for all the
window models the latency remains under 2µs.

c) Control Plane Overhead: Lastly, we evaluate the
control plane overhead by measuring the configuration time
for different parallelism degrees for the tumbling and sliding
window models. For each data point, we perform the measure-
ment 100 times and compute the average value. The window
type, i.e., count-based or time-based, does not have an effect
on the configuration time as it is expressed in the same one
MAT entry. Therefore, we focus on the difference between
having overlapping or non-overlapping windows. The results
presented in Figure 9 show that with higher parallelism degrees
there is a higher control plane overhead. As the number
of operator instances increases the configuration time also
increases for both models but not in the same way. In the case
of sliding windows the configuration time is higher than the
tumbling windows because of the required packet replication
and associated multicast groups that must be created and
configured in addition to the MAT entries of the additional
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Figure 9: Control Plane Overhead

slidingWindows table.

VI. RELATED WORK

Boughzala et al. highlight in [20] the potential benefits of
in-network computing for data-analytics. In [21], they show
initial findings for count-based windows excluding concrete
resource requirements on real hardware. Contrary, in S4 we
demonstrate that advanced windowing semantics are feasible
on real hardware implementation and we carefully analyze
corresponding resource consumption and performance charac-
teristics. While S4’s focus is the scalability in parallel stream
processing, other approaches aim at improving a particular
function in Distributed Event-Based System (DEBS) such as
pattern matching in Complex Event Processing (CEP). For
instance, P4CEP [25] is a framework for accelerating the
execution of CEP queries over P4 programmable data planes.
FastReact-PS [26] is another P4-based framework for effi-
cient complex-event detection for Publish/Subscribe (PubSub)
systems. Other works focus on reducing the Input/Output
(I/O) overhead with other in-network computing models, e.g.,
DPDK and Remote Direct Memory Access (RDMA). For
example, an RDMA-based implementation of Apache Storm
was proposed in [28] showing how RDMA helps overcoming
the performance limitations of Netty (the communication
component of Apache Storm) by eliminating frequent memory
copies and context switching which resulted in increased
throughput and reduced CPU usage. Typhoon [27] is an SDN-
based framework which relies on a DPDK version of Open
vSwitch (OVS) for supporting real-time stream processing. It
includes an SDN controller application to adapt to changes in
the workload by modifying the routing policy and changing
data analytics pipeline topology at run-time via the Openflow
interface. TCAM-based filtering is another in-network accel-
eration method which supports line-rate event matching as
described by Tariq et al. in [17] where the authors propose
PLEROMA, an SDN-based PubSub middleware which utilizes
TCAM matching to achieve bandwidth efficiency and low-
latency event filtering.

Outside in-network computing, general-purpose optimiza-
tions for stream processing [29] are widely covered [16]
[18] and can be used in conjunction with the proposed S4
framework.
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VII. CONCLUSION AND FUTURE WORK

In this paper, we presented S4 a Stateful and Scalable
Splitter Switch supporting in-network window-based parallel
stream processing. We proposed the data plane algorithms
of four essential windowing semantics, i.e., count-based and
time-based windows both in the tumbling and sliding mode.
We developed a prototype of S4 using the P416 programming
language and performed the evaluation of our implementation
on real hardware, i.e., Intel Tofino switch. The resource
consumption analysis shows that S4 handles up to 286k
concurrent data streams with a parallelism degree of up to
457k operator instances, which is 3 orders of magnitude higher
than state-of-the-art solutions.

As future work, we are interested in implementing S4 in
a real-world scenario which would require addressing the
potential integration challenges. Specifically, the data-analytics
logic resides at the application layer while S4 is executed in
the network layer. Moreover, S4 is built on the assumptions of
one event per packet and in-order arrival of events while there
could be out-of-order events and packets with multiple events.
Therefore, it is essential to test S4 with real-world dataset to
ensure its integration with stream processing applications does
not introduce errors in the results.
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Scaling distributed machine learning with In-Network aggregation. In
18th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 21) (pp. 785-808).
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