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Abstract 
 

To establish a sustainable and efficient crop cultivation, independent of season and 
climate, artificial lighting remains a critical factor. Artificial lighting can incur a significant 
environmental and financial cost. Thus, a key challenge is reducing power 
consumption for lighting without compromising crop quality and yield. In other terms, 
lighting needs to be optimized with regard to net photosynthetic activity, which is 
directly linked to crop quality and yield. 

 

Determining an optimal lighting strategy is not trivial, as the photosynthetic process 
and its influencing factors have not been fully understood yet. Furthermore, interaction 
between the influencing factors is not only possible, but can occur non-linearly. This is 
the reason why using data-driven approaches and machine learning to model 
photosynthetic behaviour as an abstract black-box has become one of many focal 
points in photosynthesis research. 

 

Currently, studying photosynthesis requires the examination of the net CO2-
assimilation-rate, which is labour- as well as resource-intensive. The aim of this work 
is to propose a framework for modelling the photosynthetic activity of C3- and C4-
plants as a function of the spectral photon flux density, with the goal of eliminating the 
assimilation-rate measurement altogether. Challenges arising from the biochemical 
complexities are highlighted and possible workarounds determined. A special focus is 
placed on data pre-processing and augmentation steps, as well as proposed machine 
learning approaches.  

Index Terms:  Controlled-environment agriculture (CEA), photosynthesis, machine 
learning, UMAP, HDBSCAN 
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1 Introduction 
 

Controlled-environment agriculture (CEA) is a form of agriculture that is optimised for 
year-round crop production regardless of location or season. It promises to be 
environmentally friendlier than traditional farming methods. This is achieved by 
restricting the farming process to the confines of the CEA, which limits the influence of 
environmentally detrimental farming side-effects [1]. Furthermore, production 
efficiency and product quality can be fine-tuned by adjusting relevant crop 
development factors within the CEA. These include, but are not limited to, temperature, 
humidity, nutrient supply, and artificial lighting or supplementation of natural light. It 
has been shown that this level of control can lead to larger yields and shorter 
production cycles in comparison to traditional field-based cultivation [2]. This, however, 
comes with an increased energy consumption that is significantly impacted by artificial 
lighting [3]. To improve the environmental and economical sustainability of CEA’s, the 
landed costs and the energy consumption need to be decreased. This could be 
achieved by finding new lighting strategies that increase crop yield and quality while 
decreasing energy consumption. To address the above strategies, a simple verification 
method is required. The photosynthetic activity of a target crop can be used as a proxy 
to inspect a strategy’s efficiency, as photosynthesis is directly linked to a plant’s growth 
and nutrient development [4]. Choosing an optimal strategy thus is equivalent to 
choosing the lighting strategy that has the highest photosynthetic activity to energy 
consumption ratio. 

Photosynthesis oversimplified is a biochemical process that fixates carbon dioxide 
(CO2) to produce organic molecules, like starch or sugar, and releases oxygen (O2) 
using energy absorbed from light, as is visualized in Figure 1. This process is 
comprised of the light reactions and the light independent Calvin Cycle. The light 
reactions and the Calvin Cycle depend on each other’s products. If the plant is 
photosynthetically active, CO2 is fixated within the plant and O2 is released. 

Figure 1: This figure abstractly visualizes photosynthesis as a cross-defendant process 
of its light reactions and the Calvin cycle. 



17. Internationales Forum für den lichttechnischen Nachwuchs 
Ilmenau, 6. – 8. September 2024 

©2024 by the authors. – Licensee Technische Universität llmenau, Deutschland. 

Conversely, if the plant is not photosynthetically active, the plant can no longer fixate 
CO2 and O2 can no longer be released.[5] 

The rate at which CO2 is fixated within the plant is called the CO2-assimilation-rate and 
can be used as a direct physical proxy for a plant’s photosynthetic activity. This is the 
main measurement principle of the gas exchange measurement method. While gas 
exchange measurements offer accurate estimates of photosynthetic activity, it is a 
technically complex, laborious, and expensive process which makes this method 
unsuitable for many use cases. Thus, finding alternative measurement principles to 
overcome the limitations of gas exchange measurement has become a focus of recent 
research. [6] 

This work proposes a semi-automated, data-driven framework, with the aim to simplify 
photosynthetic activity measurements by replacing the CO2-assimilation-rate 
measurement with machine learning (ML) based black-box models. To deal with the 
complexity in modelling photosynthesis inherent to the various expressions of the 
biochemical processes across different plant species, dimensionality reduction and 
manifold learning techniques are employed. The results are then leveraged to fine-
tune and train a single interspecies model or a set of independent models for the 
different species or identified manifold sub-spaces. 

 

2 State Of The Art In ML-Based Photosynthesis Modelling 
 

There have been many different works on leveraging machine learning to model 
photosynthesis. For example, Gao et al. [7] modelled the leaf-level photosynthesis rate 
of cucumbers as a function of light intensity, CO2-concentration and the ratio of red 
light to the total amount of photosynthetically active radiation (PAR). Support Vector 
Machines (SVM), Random Forests (RF), and a non-linear regression model based on 
the Radial Basis Function (RBF) were chosen. While Zhang et al. [8] used cucumbers 
as well, Artificial Neural Networks (ANN) were chosen as the ML model. Instead of 
cucumbers, Yang et al. [9] have chosen to model the photosynthetic rate for grapes. 
This work is of particular interest as the authors used a hyperspectral camera to attain 
spectral information in addition to chlorophyll fluorescence measurements. Bayesian 
Neural Network (BNN) and Partial Least Squares (PLS) regression models were 
created. While the previous works leveraged ML for leaf-level modelling, Wu et al. [10] 
used various vegetation indices in combination with multispectral imaging to model 
photosynthesis of rice on the canopy-level. The spectral images were taken by flying 
unmanned vehicles over rice fields. To train and verify their linear regression, SVM, 
Gradient Boosted Decision Tree (GBDT), RF and NN models, leaf-level gas exchange 
measurements were taken and then extrapolated to the complete rice fields. Of these 
models GBDT performed the best overall. A similar approach was chosen by 
Heckmann et al. [11], however, instead of leveraging spectral imaging to model 
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photosynthesis for a single plant species, the authors inspected multiple plant species. 
Using Principal Component Analysis (PCA), it was shown that the leaf reflectance 
spectra of the various species of interest lie in a low-dimensional space. Here it was 
shown that the reflectance spectra of C3 and C4 species are similar and that the 
spectra of CAM species were clearly distinct from the C3 and C4 species. Interspecies 
photosynthesis NN and PLS models were then trained and evaluated. Noteworthy, 
however, is that the authors results show that the intraspecies models performed 
worse than models trained for each inspected plant species independently. Similar to 
the previous approaches, Fu et al. [12] leveraged hyperspectral imaging to acquire the 
leaf reflectance spectrum. Using this spectrum, tobacco’s maximum carboxylation rate 
of Rubisco and the maximum electron transport rate supporting Rubisco regeneration 
were estimated and used as a proxy for the photosynthesis rate. However, instead of 
training a single ML model a framework to create a mixed model based on combining 
an ensemble of ANN, SVM, LASSO, RF, PLS and Gaussian Process (GP) models with 
a stacked approach was created. The regression results of the ensemble where then 
used as input for the stacked regressor which in turn outputs the final prediction. 

Whereas the previous works focused on leveraging ML methods without a priori 
knowledge about the biochemical expression of the photosynthetic process, Kaneko 
et al. [13] combined an Artificial Neural Network (ANN) model with mechanistic leaf-
level photosynthesis models, such as the models defined by Farquhar et al. [14], to 
estimate canopy level photosynthesis of spinach. The mechanistic models are used to 
estimate the leaf-level photosynthetic rate. This and the Leaf Area Index (LAI) are used 
together as inputs for the ANN model. The authors claim that this combination of 
modelling approaches results in superior generalization capabilities and overcomes 
the shortcomings of regular ML models that usually show low predictability outside of 
the training data range. However, to be able to estimate the leaf-level photosynthesis, 
empirical constants specific to each plant species need to be determined. In the context 
of this work, the approach of Kaneko et al. [13] poses a feasible alternative to the 
framework proposed, however, this is only the case, if the constants are already 
known. Otherwise, extensive empirical studies of the plant species in question would 
be required, significantly increasing the complexity of photosynthesis measurements. 

The current state of the art approach to model photosynthesis using machine learning 
as described in the literature can be summarized as follows: Often a single plant 
species [7], [8], [9], [10], [12], [13] is selected for which a photosynthesis model is to 
be created. Leafy green plants such as cucumbers [7], [8], grapes [9] or spinach [13] 
are frequently chosen. Then the photosynthetic rate is measured either at the leaf-, 
whole-plant-, or canopy-level. Whole-plant- and canopy-level measurements are 
performed by using large enough gas chambers [13] or by taking leaf-level gas-
exchange measurements and extrapolating them [10]. The acquired data is split into 
training and test datasets. ML models are optimized on the training dataset and often 
evaluated by calculating the determination coefficient (R2) as well as the root mean 
squared error (RMSE) as metrics for model selection [7], [8], [9], [11], [12], [13]. 
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An ML approach combined with hyperspectral imaging [9], [10], [11], [12] and 
photosynthetic photon flux density (PPFD) measurements [13],  can be effectively 
utilized for photosynthetic activity estimation. However, building a generalizable model 
is challenging due to interspecies differences in biochemical process expression. 
Additionally, measuring photosynthetic activity can be difficult, because measuring it 
directly via the assimilation rate is impractical and not always feasible. Therefore, a 
unified modelling framework, which aims at building models that simplify 
photosynthetic rate measurements, is needed. Furthermore, this framework needs to 
be able to accommodate the variations in data structure inherent to the biochemical 
differences between the plant species of interest. 

 

3 Framework Proposal 
 

To overcome the previously mentioned challenges, the proposed framework takes 
interspecies leaf reflectance spectra, ambient light spectra, chlorophyll fluorescence, 
and PPFD measurements as input and leverages dimensionality reduction and 
clustering to create a generalisable estimator. The chlorophyll fluorescence is of 
interest, as it can be used as a proxy to determine the electron transport rate which is 
closely linked to the photosynthetic activity [15]. 

The proposed framework roughly consists of three steps as is shown in Figure 2. First 
the measurements are aggregated into a single dataset and the spectral information is 
pre-processed. The dataset is then transformed into a low-dimensional space for data 
exploration using Uniform Manifold Approximation and Projection (UMAP) [16]. The 
transformed data is then clustered using Hierarchical Density-Based Spatial Clustering 
of Applications with Noise (HDBSCAN) [17]. From this clustering the feature 
importance can be determined by fitting a classifier and determining the permutation 
feature importance. Having determined the feature importance, the dataset’s 
dimensionality can be significantly reduced by dropping unimportant features before 
training the model. Finally, the regression model of choice can be trained and validated 
on either the interspecies dataset, datasets separated by species, or datasets 
separated by cluster label depending on the resulting model’s performance. The 
procedure for identifying important features is depicted in Figure 3. The following 
subsections will elaborate on how the spectral data can be pre-processed and will 
introduce UMAP and HDBSCAN briefly. 

 

 

Figure 2: Simplified Framework Structure 
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Table 1: Visualisation of dataset structure prior to pre-processing. Each row is a datapoint. The leaf 
reflectance and ambient light spectrum measurements are stored as row vectors in which columns 
store a metric at a certain wavelength. Here wavelengths between 380 nm and 780 nm are shown. 

  Leaf Reflectance 
Spectrum 

Ambient Light Spectrum 

Species PPFD Chlorophyll 
Fluorescence 

380 
nm … 780 

nm 
380 
nm … 780 

nm 

… … … … … … … … … 

… … … … … … … … … 

… … … … … … … … … 

 

3.1 Pre-processing spectra 

The spectra obtained from reflectance or ambient light measurements are typically 
represented as a row vector per measurement. Each entry in these vectors 
corresponds to a specific metric at a particular wavelength such as the photon flux 
density. This leads to a dataset as is visualized in Table 1. It includes all scalar valued 
measurements such as PPFD and the chlorophyll fluorescence, a column storing 
which plant species was measured for documentation purposes, as well as the leaf 
reflectance and ambient light spectrum measurements. 

Using the spectrum vectors directly to train the machine learning model places the 
learning problem in a high dimensional space due to the high number of features in the 

Figure 3: This image visualises the framework process for identifying latent subspaces 
and determining a feature importance. 
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dataset. For example, the dataset in Table 1  would consist of a total number of 163 
features if a spectrometer with a resolution of 5 nm between 380 nm and 780 nm were 
to be used. The learning problem’s high dimensionality can lead to a decrease in model 
efficiency and effectiveness. Furthermore, real world datasets tend to become sparser 
with increasing dimensionality. This exponentially increases the needed amount of 
data to discern meaningful pattern from noise. This phenomenon is known as the curse 
of dimensionality. To combat this, the spectra need to be represented in a low 
dimensional space. This can be achieved by applying varying weight functions to filter 
the spectrum and then calculating the ratio of the integrated weighted spectrum to the 
integrated spectrum. This way, a spectrum can be represented with 𝑘𝑘 ratios denoted 
as 𝑅𝑅𝑘𝑘 in the following. Let 𝑆𝑆(𝜆𝜆) be the spectrum and 𝑆𝑆𝑘𝑘(𝜆𝜆) be the weighted spectrum 
as functions of the wavelength 𝜆𝜆 then the ratio 𝑅𝑅𝑘𝑘 can be written as: 

𝑅𝑅𝑘𝑘 =
∫ 𝑆𝑆𝑘𝑘(𝜆𝜆)𝜕𝜕𝜕𝜕∞
−∞

∫ 𝑆𝑆(𝜆𝜆)𝜕𝜕𝜕𝜕∞
−∞

 

In this framework normalised probability density functions of normal distributions are 
chosen as weighting functions to calculate 𝑆𝑆𝑘𝑘. Let 𝑤𝑤𝑘𝑘(𝜆𝜆, 𝜇𝜇𝑘𝑘,𝜎𝜎𝑘𝑘)  be the 𝑘𝑘-th weighting 
function with the centre wavelength 𝜇𝜇𝑘𝑘 and the standard deviation  𝜎𝜎𝑘𝑘, which can thus 
be written as: 

wk(λ,μk,σk) =
f(λ,μk,σk)

C(λ)   =
1

C(λ)σk√2π
e−

1
2 �

λ−μk
σk

�
2

 

The function 𝐶𝐶(𝜆𝜆) normalises the values to ensure that ∑𝑅𝑅𝑘𝑘 = 1. This is achieved by 
choosing 𝐶𝐶(λ) in such a way that the sum of all 𝑓𝑓𝑘𝑘(𝜆𝜆, 𝜇𝜇𝑘𝑘,𝜎𝜎𝑘𝑘) evaluated at any 𝜆𝜆 equals 
to one: 

C(λ) = �𝑓𝑓(λ, μ𝑘𝑘,σ𝑘𝑘)
𝑘𝑘

 

An example for a set of weighting functions is visualized in Figure 4. Here the functions 
were chosen to reduce the spectrum into ratios for blue, green and red light. For this, 
central wavelengths of 440 nm for blue, 570 nm for green and 710 nm for red was 
chosen. A standard deviation of 45 nm was chosen to visualize the effects of 𝐶𝐶(λ). 
However, the spectra from measurements are not present as continuous functions, so 
𝑅𝑅𝑘𝑘 needs to be discretised. When measurements at 𝑁𝑁 wavelengths λ𝑖𝑖 are present, the 
ratio 𝑅𝑅𝑘𝑘 is the scalar product of the weights vector wk�����⃗  and the spectrum vector 𝑆𝑆 divided 
by the sum of elements in 𝑆𝑆. 

𝑅𝑅𝑘𝑘 =
∑ 𝑤𝑤𝑘𝑘(λ𝑖𝑖, μ𝑘𝑘,σ𝑘𝑘)𝑆𝑆(λ𝑖𝑖)𝑁𝑁
𝑖𝑖=1

∑ 𝑆𝑆(λ𝑖𝑖)𝑁𝑁
𝑖𝑖=1

=
𝑤𝑤𝑘𝑘�����⃗ ⋅ 𝑆𝑆
∑ 𝑆𝑆𝑛𝑛����⃗𝑛𝑛

. 
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Now that the spectra have been pre-processed, the complete dataset as is visualised 
in Table 1 can be explored to infer a feature importance, with which the curse of 
dimensionality can be further mitigated by dropping unimportant features. 

 

3.2 Non-linear dimensionality reduction with UMAP 

The proposed framework utilizes UMAP [16], a manifold learning technique for 
dimensionality reduction. UMAP preserves non-linear relationships in the data. This 
can lead to improved pattern identification and visualisation in biochemical applications 
[18], which is why UMAP was chosen over classical dimensionality reduction 
techniques like PCA. Another advantage of UMAP over alternative non-linear 
dimensionality reduction techniques, like T-distributed Stochastic Neighbour 
Embedding (t-SNE) [19], is that it is able to preserve more global data structure while 
offering superior runtime performance [16]. This is achieved by assuming that the data 
is uniformly distributed on some high-dimensional Riemannian manifold, that the 
Riemannian metric is locally approximately constant, and that the manifold is locally 
connected. In simpler words, the datapoints can be placed uniformly on some high 
dimensional surface, where the shape of said surface does not change much and no 
sharp edges, breaks or other distortions are present, and the distance between 
datapoints on said surface can be measured with a given distance metric. In this 
framework using the Euclidean distance metric for this step is proposed as the 
reflectance spectra lie in a low-dimensional space across plant species  [11]. This 

Figure 4: Example weighting functions 𝑤𝑤𝑘𝑘 for central wavelengths 440 nm, 570 nm and 710 nm with a 
chosen standard deviation of 45 nm. 
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choice needs to be verified in future works as other distance metrics, like the 
Mahalanobis distance [20], might lead to better representations when compared to 
using the Euclidean distance. After placing the points on said surface, a nearest 
neighbour graph representation of the data is constructed. The topology of this graph 
is explored and a low-dimensional representation that best describes it is created and 
optimized. The result is often a two-dimensional or three-dimensional point cloud that 
represents the relationships present between the datapoints of the dataset. 

 

3.3 Clustering with HDBSCAN 

The result of applying UMAP to the dataset is a vector space in which similar datapoints 
are placed closer to each other than to dissimilar datapoints. This satisfies the core 
assumption of connectivity-based (hierarchical) clustering methods. Furthermore, if 
groups of similar datapoints are placed close to each other, then the density of points 
within a group is greater than its sparse surrounding. Thus, such groups could be 
identified using density-based clustering methods as well. As both approaches can be 
used in this case, Hierarchical Density-Based Spatial Clustering of Applications with 
Noise (HDBSCAN) [17], a density-based hierarchical clustering method, is chosen. 
This method applies the DBSCAN clustering method  [21] over a range of values for 
the maximum distance between datapoints for them to be considered to be part of the 
same cluster. From these results the clusters are found that remain stable, which 
allows HDBSCAN to be more robust to parameter selection than DBSCAN and to find 
clusters with varying densities [22]. After segmenting the dataset into clusters, 
classification methods can be employed to identify the most important features that 
distinguish these clusters from one another. 

 

3.4 Inferring feature importance with RF-classification 

After reducing the dataset's dimensionality and grouping similar data points, it is crucial 
to identify what makes each group unique. Then the dataset can be further processed 
for model training with regards to this information. This can be achieved with 
descriptive statistics and classical methods like ANOVA [23]. However, this often 
requires manual interaction with the data and the results need to be manually 
interpreted as well. Therefore, an automated machine learning approach is preferable 
within the context of the proposed framework. A straightforward and effective method 
to achieve this is to label the datapoints with the cluster IDs and to fit and inspect a 
classification model. The classifiers permutation feature importance can then be used 
as the overall feature importance for the photosynthetic rate regression model. To 
determine the feature importance the classifier is fitted to the complete labelled 
dataset. As the goal is to identify what makes the clusters unique rather than building 
a generalizable classifier, overfitting is not an issue but rather something desirable. 
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After the RF has been fitted, values of a feature are shuffled and the resulting 
degradation in classification performance determined. The more the performance 
degrades the more important a feature is. Now knowing which features contribute to 
the differences of clusters within the dataset, it can be used for feature selection and 
dimensionality reduction as part of pre-processing the data before training and 
evaluating the black-box photosynthesis model. 

 

4 Conclusion & Outlook 
 

In conclusion, this paper illuminates the current state of machine learning approaches 
to modelling photosynthesis. Additionally, a framework for creating interspecies 
photosynthesis models as a function of PPFD has been proposed. This framework 
includes data pre-processing, dimensionality reduction, feature importance inference, 
and model training and selection steps. While this framework holds promise as a useful 
tool for developing photosynthesis models, its performance remains to be evaluated, 
necessitating data collection. Particularly, the side-effects of the chosen ML methods 
must be considered during framework performance evaluation. A known issue that 
might arise stems from the choice of ML methods used to determine the feature 
importance. Combining manifold learning for projecting the dataset into a lower-
dimensional space with clustering might lead to segmentation of clusters within the 
dataset. This segmentation artificially increases the number of clusters and might bias 
the determined feature importance detrimentally. This could potentially be combatted 
by increasing the dimensionality of the lower-dimensional representation. As this, 
however, defeats the goal of reducing dataset dimensionality a trade-off will need to 
be found. Future works include data collection in cooperation with the biology faculty 
and framework evaluation. 
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