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Abstract
This study aims at the prediction of the turbulent flow behind cylinder arrays by the application of
Echo State Networks (ESN). Three different arrangements of arrays of seven cylinders are chosen
for the current study. These represent different flow regimes: single bluff body flow, transient flow,
and co-shedding flow. This allows the investigation of turbulent flows that fundamentally originate
from wake flows yet exhibit highly diverse dynamics. The data is reduced by Proper Orthogonal
Decomposition (POD) which is optimal in terms of kinetic energy. The Time Coefficients of the
PODModes (TCPM) are predicted by the ESN. The network architecture is optimized with respect
to its three main hyperparameters, Input Scaling (INS), Spectral Radius (SR), and Leaking Rate
(LR), in order to produce the best predictions in terms of Weighted Prediction Score (WPS), a
metric leveling statistic and deterministic prediction. In general, the ESN is capable of imitating the
complex dynamics of turbulent flows even for longer periods of several vortex shedding cycles.
Furthermore, the mutual interdependencies of the TCPM are well preserved. However, optimal
hyperparameters depend strongly on the flow characteristics. Generally, as flow dynamics become
faster and more intermittent, larger LR and INS values result in better predictions, whereas less
clear trends for SR are observable.

1. Introduction

Machine learning (ML) provides the possibility of modeling turbulent flows without solving the complex
underlying equations [1–7]. The possible outcomes can range from the reconstruction of the collective
response of the turbulent flow in a confined geometry (such as cumulative heat transfer or aerodynamic
forces) to the complete reconstruction of the flow field itself. These reconstructions can be a modeling of the
turbulent flow or a prediction. Predicting the exact values of the velocity is far more challenging (or even
impossible) than modeling an output with similar dynamics. Therefore, a temporal prediction of the velocity
field in a turbulent flow is the ultimate objective, one that might never be entirely achieved but is undeniably
worthwhile to strive for.

Due to the inherent chaotic nature of turbulence, temporal predictions diverge rapidly in the course of
time. One possible solution for that is to feed the ML algorithms with some limited information about the
flow continuously. This can be achieved through limited sensor data in the field [8–10] or complete input of
some secondary variables, such as temperature or density, to the algorithm [11, 12]. Bright et al [8]. were
able to reconstruct the flow from sparse pressure sensor measurements over the surface of a cylinder for the
case of a von Kármán vortex street (KVS). Later, Raissi et al [11]. conducted pioneering work by
reconstructing the pressure and velocity fields behind a bluff body from available flow visualization data.

Despite the challenges of the independent temporal prediction of turbulence without any input
information during the prediction phase, studies have already begun to address this issue to some extent.
Sekar et al [13]. conducted one of the pioneering works to predict the velocity field over an airfoil via a
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combination of convolutional neural networks and deep Multilayer Perceptrons (MLP). Meanwhile,
Srinivasan et al [14]. combined MLPs with long short term memory networks to predict turbulent shear
flows. Later, physical principles were incorporated with ML in the form of physics-informed deep learning to
assist the algorithms in the prediction of turbulence [15–17].

Complex deep learning algorithms combined with physical principles can certainly improve predictions
if they are carefully chosen and adjusted. However, the complexity and computational needs of such
algorithms increase dramatically. Furthermore, it has not been proven yet that more complex algorithms
would necessarily result in better modeling and predictions of turbulence in general. In this regard, reservoir
computing [18, 19] or, more specifically, Echo State Networks (ESN)[20] are promising algorithms that
feature simple structure, fast computation, and proven learning capabilities for time series. An ESN consists
of a reservoir of sparsely connected neurons, in which only the output layer is trained, and the neurons retain
a memory of their previous state [21–23]. Several studies have implemented ESNs to model 2-dimensional
Rayleigh-Bénard convection [24–27] and showed the capability of ESNs in imitating the complex dynamics
of turbulent flows.

Recently, Ghazijahani et al [28] predicted the unsteady KVS behind a cylinder. There, data reduction was
applied via Proper Orthogonal Decomposition (POD) to the flow, and then the ESN predicted the Time
Coefficients of the PODModes (TCPM). The results demonstrated the potential of the ESN for the
prediction of unsteady dynamics of turbulent KVS for a relatively long period of time. However, there is still
a lot to be learned about the application of ESNs to more complex turbulent flows. In this regard, the flow
past an array of cylinders is an ideal test case [29]. Varying the distance between the cylinders, the dynamics
of the turbulent wake significantly changes and shifts from single bluff body flow to transient flow and finally
to co-shedding flow. Furthermore, once POD is applied to the flow, the increasing complexity of the flow
shows also in the higher relative values of kinetic energy for higher modes.

Hence, the current study aims to investigate the predictive capability of an ESN in such complex
dynamics. Furthermore, it is interesting to investigate the possible impact of the array variation and,
therefore, the dynamics on the performance of ESNs in general and using optimized hyperparameters in
particular. Thus, three different arrangements of cylinder arrays (see Ghazijahani and Cierpka [29] for more
details) with single bluff body, transient and co-shedding flow regimes are chosen for the current study. They
are named in the following mVnH, where the first number stands for the vertical distance and the second for
the horizontal distance in diameter of the cylinders, respectively. Then, the flow is reduced by POD, and the
TCPM are predicted by an ESN with a reservoir of 3000 neurons. The three main hyperparameters of the
ESN, namely input scaling (INS), spectral radius (SR), and leaking rate (LR), are varied to investigate their
respective influence. Finally, the results are visualized and quantified to assess the predictions
deterministically and statistically.

2. Methods

2.1. Experimental setup
Figure 1 shows a photo of the experimental setup for the Particle Image Velocimetry (PIV) measurements
behind the cylinders. Seven cylinders were arranged in two columns, four in the rear and three in the front.
The cylinders were rigid and had a diameter of D= 1 mm. The vertical distance of the cylinders in each
column (V/D) and the horizontal distance between the two columns (H/D) were varied for V/D= [2, 4, 6]
andH/D= [2, 4, 8], respectively. This resulted in nine different arrays of cylinders, each with its distinct flow
features. The arrays were placed in a water channel with a cross-section of 50× 50mm2. The free stream
velocity was set to V∞ = 133mm s−1 and thus the Reynolds number based on the cylinder diameter was
Re= V∞D/ν ∼ 100. The flow was seeded with polyamide particles of 5µm in diameter and hallow glass
spheres of 10µm in diameter. The latter was used only for arrays of V/D= 6 due to the necessity of larger
particles because of the larger field of view in these cases.

A continuous-wave laser (Laserworld Green-200532) illuminated the vertical mid-plane of the channel
with a light sheet with a thickness of 1mm. Then, PIV images of the illuminated particles were captured
using a high-speed camera (HS 4 M by LaVision GmbH) perpendicular to the laser sheet from the outside of
the water channel. The images were calibrated against a calibration target. The PIV double-frame images
were recorded at 200Hz for 15 s. This corresponds to 330 vortex-shedding events for the wake of a single
isolated cylinder, which is sufficient for data convergence.

An advanced cross-correlation evaluation was carried out for PIV processing via DaVis 10 (LaVision
GmbH) for an initial rectangular interrogation window size of 64× 64 pixels with 50% overlap, and a final
circular Gaussian window weighting of 16× 16 pixels again with 50% overlap. This yielded a final spatial
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Figure 1. The water channel along with the cylinders and the field of view for the PIV measurements. The cylinders are arranged
in nine different sets in total, with V = [2, 4, 6]mm and H = [2, 4, 8]mm, showing qualitatively different wake flow
characteristics [29].

Figure 2. A schematic sketch of an Echo State Network (ESN).

resolution of 0.069× 0.069mm2 for the arrays with V/D= 2 and 4, and 0.12× 0.12mm2 for the arrays with
V/D= 6. For all arrays, the field of view consisted of 231× 138 vectors. The number of outlier vectors
remained under two percent for all measurements, applying a normalized median test [30]. The dynamic
spatial and velocity ranges were [0–14] pixels and [0–150]mm s−1, respectively. Dynamic spatial range is the
maximum length of the field of view divided by the vector spacing, whereas dynamic velocity range is the
maximal velocity divided by the uncertainty (often taken as 0.1 or 0.05 pixel displacement). For properly
adjusted experiments, it has usually been assumed that the absolute error is in the range of 0.1 pixels [31].
This results in minimum relative uncertainties of 1% and 1.3% for V= 2,4 and V = 6 in the free stream.

2.2. ESN
In this study, an ESN is used to predict the TCPM of the velocity fields behind three different cylinder arrays
with different arrangements, namely 2V2H, 4V2H, and 6V2H. An ESN is a type of recurrent neural network
where only the output layer is trained. Figure 2 shows a schematic sketch of the ESN. The ESN consists of a
reservoir of N neurons that are randomly connected to each other with a weight matrixW (green arrows)
and to the input signals with a weight matrixWin (blue arrows). The weight matrices of these connections
(W andWin) are randomly generated at the beginning of the training process, and their random state is fixed
with a variable named as Random Seed (RS). The network thus takes the past values from previous time
steps and uses a nonlinear and randomly generated reservoir state to learn the output connection to best
predict the future time steps. Then each neuron state s(n) is updated by following equations:

s̃(n) = tanh
(
W in [1;u(n)]+Ws(n− 1)

)
(1)

s(n) = (1− LR) s(n− 1)+ LRs̃(n). (2)
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Here, LR stands for the LR, and it is the speed at which the neurons are updating their state. Next, the
reservoir starts to learn some connections (Wout, red arrows in figure 2) from the neurons to the output
signals q(n) so that it can predict them accurately:

q(n) =W out [1;u(n) ; s(n)] (3)

where

W out = argmin

 1

NoutT

Nout∑
j=1

[
T∑

i=1

(qi (n)

−qi (n)
target)2

+β
∥∥∥wout

j

∥∥∥2]} . (4)

Here, β > 0 stands for the ridge regression parameter, which is used to prevent the amplification of small
differences in state dimensions by large rows ofWout. Furthermore, it prevents the algorithm from
overfitting, which occurs when it learns the training data by heart and performs poorly on new unseen data.

For the current study, the ESN is written in Python using the easyesn library [32]. It consists of N = 3000
neurons randomly connected to 20 percent of the other neurons in the reservoir. The INS limits the input
weights toWin ∼ u [−INS/2, INS/2]. The network is trained for 700 time steps and tested for another 700
time steps to assess its capability in prediction of the TCPM. For more details of the flow physics and vortex
shedding for the different cases the interested reader is referred to Ghazijahani and Cierpka [29]. There are
three main hyperparameters that are believed to have the most important role in the performance of an ESN,
their values are varied to investigate how they affect the predictions. The LR, is responsible for the speed at
which the reservoir is updating; thus, its optimum value can change with the dynamics of the data. The
second main hyperparameter is the SR which is the maximum eigenvalue ofW. In other words, it is the
chaotic degree of the nonlinear interactions between the neurons. Thus, the higher the SR value, the more
chaotic the interactions between the neurons. However, in general, SR is recommended to be kept below one
in order to ensure the Echo State Property [21], which is the independence of the network from its initial
state and dependence only on the past input. INS is the third main hyperparameter, which limits the input
weights and, thus, the relative weight of the input against the reservoir’s internal history (in the prediction,
input will be the output of the reservoir itself). Finally, the random realization of the reservoir itself can
impact the predictions. However, it has been shown previously that around 24 RS are enough to make a
conclusion about the general performance of the reservoir in a specific hyperparameter set [28]. Thus, for
the current study, LR and SR are varied for 10 different values between [0,1], and INS is varied for ten values
between [0, 20]. Moreover, for each hyperparameter set, 24 RS are tested to draw conclusions independent of
the effect of the random realizations of the ESN.

3. Results

The KVS behind a single cylinder has been used extensively in the literature for ML applications. The
turbulent flow behind arrays of cylinders showed very rich and complex dynamics that were highly
dependent on the distances between [29]. Three different general flow regimes were observed: a single bluff
body, transient flow, and co-shedding flow.

In order to provide examples of rich, complex, yet different turbulent flows for the current machine
learning algorithm (ESN), one example out of each of the three aforementioned flow regimes is chosen.
2V2H for the bluff body flow, 4V2H for the transient flow, and 6V2H for the co-shedding flow. Then,
snapshot POD[33] was applied to the velocity fields to reduce the amount of data fed to the reservoir. Over
the past decades, POD-based reduced order modeling has been widely used in the literature [34, 35].
Additionally, POD is an excellent tool for gaining a solid understanding of the nature of the flows as the
modes are optimal in terms of kinetic energy. In this respect, figure 3 shows the cumulative percentage of the
kinetic energy up to each POD mode for the three arrays that are used in the current study. Evidently, the
complexity of the flow increases as one moves from 2V2H to 4V2H and 6V2H arrays. For 2V2H and 4V2H
arrays, around 83% and 71% of the kinetic energy is included in the first ten modes, while this number
reduces to only 64% for the 6V2H array. For the current study, the first hundred POD modes are used for
predictions via ESN, and this corresponds to 97%, 89%, and 92% of the total kinetic energy for 2V2H,
4V2H, and 6V2H arrays, respectively. Accordingly, it can be assumed that the main characteristics of the
dynamics of the flows are well represented for all three arrays. In addition, the amount is relatively similar, so
that an influence on the prediction capabilities might not be strong.
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Figure 3. Sum of kinetic energy percentage of the POD modes for 2V2H, 4V2H, and 6V2H arrays.

It is important to note before moving on to the optimization of the ESN and predictions that the purpose
of the study is to investigate the possibility of predicting and/or modeling such complex dynamics via ESN.
Furthermore, it is essential to observe how the performance of the predictions is affected by the nature of the
flow when one changes from a single bluff body flow to transient or co-shedding flow. Lastly, as already
stated, ESNs are a primary example of a ML algorithm, and the effect of variations in its hyperparameters on
its predictions in different chaotic dynamics can give valuable insight for further application and to design
more complex ML algorithms to overcome its shortcomings as well.

3.1. Optimization
Network optimization or, in other words, identification of the best prediction and thus the best set of
hyperparameters, is an essential part of ML applications in turbulence. In this regard, the application’s
objective and the task’s complexity will be heavily influential. For the current study, it is clear that the
inherent chaotic temporal evolution of the turbulent flow will prevent the network from having perfect
deterministic predictions. Therefore, the aim is to maintain general statistical similarity in the predictions
and search for the maximum possible deterministic accuracy. While deterministic accuracy translates to
perfect alignment with the ground truth, the statistical similarity is more than just the proximity of the
probability density function (PDF) estimates of the time coefficients. In other words, two signals can have
identical PDFs and very different oscillations. Then, once the optimization parameter for a single time
coefficient has been identified, one must figure out how to combine the parameter values of all hundred
modes to come up with a final value for the entire prediction set. The solution for this is actually quite
straightforward since the ratio of the total kinetic energy attributed to a certain POD mode to the total
kinetic energy in the flow can be used as a weighting coefficient.

In this regard, one might suggest the use of conventional measures such as mean squared error in a
weighted form, as already discussed. However, as shown in figure 13 in the appendix, such measures end up
identifying minimum fluctuations around the average values as the best predictions since any offset in the
phase or domain of the fluctuations in the predictions will quickly diverge to higher error measures. Purely
statistical measures such as standard deviation (σ) or Kullback–Leibler divergence (KLD) of the entire values
in the prediction phase have the drawback that they will not necessarily result in predictions with similar
dynamics. Although the results of optimization based on the weighted minimum KLD in the appendix
(figure 13) shows relatively promising outcomes, one needs to consider that it is always possible to have two
signals with very different dynamics but similar PDF distributions, and the particular promising outcome of
the KLD for the current example is mainly due to the very effective grasp of the general dynamic of the flow
by the ESN and the absence of predictions with similar PDFs but very different dynamics such as dominant
frequency. Furthermore, as already mentioned, the current study aims for predictions with maximum
statistical and deterministic similarity simultaneously, and therefore, we choose to not rely on purely
statistical measures such as KLD for optimization. It has been shown in the appendix in figure 14 that the
optimization parameter of the current study WPS (which will be later explained) has similar performance in
terms of statistical convergence to the ground truth compared to KLD, although it is not aiming for purely
statistical convergence in its design. Finally, one might suggest the application of an extra ML algorithm for
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Figure 4. Schematic explanation of the division of the time coefficients into three main parts (positive, average, and negative) in
Weighted Prediction Score (WPS) calculation.

the task, which is indeed a very interesting direction to proceed but is in objection to the general claim of the
current study to carry out predictions without using complex deep learning algorithms for the task.

Therefore, the Weighted Prediction Score (WPS) is introduced as the optimization parameter for the
identification of the best predictions. For the calculation of the WPS, both the statistical similarity and
deterministic alignment of the predictions are taken into account. Figure 4 shows the division of the time
coefficients into positive (red), average (green), and negative (blue) values. Values in the range of
[−σ/4,+σ/4] are considered average, and above and below are positive and negative values up to±2σ. N is
going to be the percentage of the time steps in which the predictions are aligned with the ground truth in
terms of being in the range of these negative, average, and positive values. By defining the sign function as:

sign(x) =


1 if σai/4< x< 2σai ,

−1 if − 2σai < x<−σai/4,

0 if −σai/4< x< σai/4.

(5)

and assuming the predicted values from the ESN for mode i as P= {pi1 ,pi2 , . . . ,pin} and the actual values
as A= {ai1 ,ai2 , . . . ,ain}, then the N is calculated as:

ci =
n∑

j=1

{1{sign
(
pij
)
= sign

(
aij
)
}, (6)

Ni =
ci
ni
, (7)

where 1{} is an indicator function that returns 1 if the condition inside is true (i.e. the sign of prediction
matches the sign of the actual value) and 0 otherwise, and n is the total number of predictions. Once the N is
calculated for each Mode i, then the WPS is determined as follows:

WPS=
100∑
i=1

(1− |
(
σpi −σai

)
|

max
(
σpi ,σai

))×

1−
|
(
σp′i

−σa′i

)
|

max
(
σp′i

,σa′i

)
×Ni × Ei

 . (8)

Here, σai and σa′i
stand for the standard deviation of the Time Coefficient of the PODModes (TCPM)

and their temporal derivative of the ground truth, and σpi and σp′i
are for the predicted counterparts, and Ei

is the energy percentage of the mode i. With this measure, while Ni contributes to the deterministic
alignment of the predictions with ground truth, the rest of the equation contributes to the statistical
similarity. Finally, the multiplication by Ei assures the proportional contribution of the WPS of the
individual modes in the WPS of the entire prediction. Thus, when WPS of different predictions are
compared, the one with the maximum value will be chosen as the best prediction.
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Figure 5. Results of predictions for 2V2H array.

3.2. Bluff body flow
Due to the proximity of the cylinders, the flow sees the array as a single bluff body, so one large vortex with a
relatively low shedding frequency dominates the flow behind the array, as can be seen in figure 5. This flow
shows the fastest convergence of the cumulative energy within the first POD modes (see figure 3). This slow
and very unsteady dynamics is represented in the TCPM of the 1, 3, 5, 7, 9th modes in figure 5(a). The TCPM
of the modes with lower energies, namely 20, 40, 60, 80, 100th, are shown in the appendix in figure 18. The
gray background shows the part of the TCPM that are used for the reservoir training. In the figure, only the
even modes are shown since most of the initial modes are associated with vortex shedding and thus
accompanied by couples with 90-degree phase shifts. In addition, the spatial distributions of the modes are
shown in figure 17 in the appendix for a clearer understanding of their role in flow dynamics. The red curves
show the prediction results for the set with the best WPS values. While the slow and unsteady dynamics of
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the flow make accurate deterministic predictions of the TCPM quite challenging, the general dynamics of the
oscillations are imitated to some extent in the predictions. This has been better represented in figure 15 in the
appendix, where the dominant frequencies of the TCPM for the prediction and the ground truth are
compared. Although these frequencies are not identical, they are from the same range.

Figure 5(b) shows the number of best predictions (with the highest WPS) for each of the 24 random
realizations in relation to the SR, LR, and INS. The highlighted squares show the hyperparameter set with the
best average prediction for all the random seeds, which is, in this case, SR= 0.1, LR= 0.3, and INS= 0.1. In
figure 5(b) left, it is clear that lower LR and SR values result in better prediction. For INS vs LR in figure 5(b)
middle, there is a large empty space for LR> 0.3 and INS< 7. Thus, this region is not suitable for predicting
the dynamics of the flow behind 2V2H. Lastly, there is a quite linear relationship between INS and SR on the
right side, such that as SR increases, INS should also increase for better predictions.

Figure 5(c) shows the reconstructed Vy/V∞ field for the best prediction vs the ground truth for the 350th
and 700th time steps. The reason for showing only the vertical velocity field is that it represents much more
important/characteristic information about the flow compared to horizontal or total velocity. This is because
most oscillations occur vertically in the flow. From a deterministic point of view, the prediction possesses a
degree of misalignment with the flow. However, their general shape and structure are well aligned.
Considering the slow unsteady dynamics of the flow, as well as the fact that the forecasts are given in time
steps far ahead in the predictions, they align reasonably well with the ground truth. A more detailed analysis
in this regard will be followed in the discussion section.

3.3. Transient flow
Figure 6 shows the prediction results for the 4V2H array. This array represents the transient flow,
characterized by a very asymmetric, unsteady flow where four individual vortex streets behind the array are
observed. The top cylinder in the first column has a vortex street with a 24Hz shedding frequency, while the
three cylinders in the second column have vortex streets with frequencies of 13, 18, and 6Hz from top to
bottom, respectively. This large variation in the frequencies of the vortex streets, along with their very
asymmetric structure (see figure 6(c)) provides very rich and chaotic dynamics for the ESN to encounter.

Figure 6(b) shows the predicted TCPM. Again, higher modes are shown in the appendix in figure 19. All
predictions are very close to the ground truth. In other words, seeing the real oscillations in the gray part
during the training, one can not choose the real values in the prediction phase if the prediction and ground
truth were represented with the same color. From this perspective, mode 7 is particularly interesting. Even
though it has a very different oscillatory nature compared to the other four, it has been well reconstructed by
the ESN without being affected by the other modes’ dynamics. However, deterministic alignment of the
predictions with the ground truth occurs in different periods for each TCPM. For instance, while a1 has
deterministic alignment for the first 200 time steps, for a3 and a5, the best alignment occurs between the
300th and 500th time steps. The dominant frequencies in figure 15 are relatively close and sometimes even
identical for the first ten modes only modes 3, 4, and 5 show some deviations. From figure 17 it is apparent
that these three modes represent features of the vortex street behind the central cylinder in the second
column. In order to further investigate this difference, the frequency spectrum of the prediction and ground
truth for mode 3 is shown in figure 16 exemplarily. Apparently, there are two peaks for the ground truth in
the spectrum, one near 6Hz and another which is stronger around 18Hz. However, in the predictions the
magnitude of the first peak has increased and the magnitude of the second peak has declined, so that two
peaks with almost identical power are present. Therefore, one can conclude that unlike the first impression
from figure 15 for dominant frequencies, actually, the frequency domain of the prediction is not that much
different from the ground truth.

Next is the hyperparameters of the best predictions within each random seed that are shown in
figure 6(b). The highlighted squares show the hyperparameter set with the best prediction for all the random
seeds, which is, in this case, SR= 0.9, LR= 0.8, and INS= 15. Compared to the 2V2H array, the main
difference is the predominant preference for high INS values for the best predictions. Then, for LR and SR, it
is clear that low values are no longer preferred, and moderate to high values have, in general, better
predictions. Furthermore, there is also a slight linear relation between SR and LR, meaning that as SR
increases, it is necessary to increase the LR values as well in order to produce better predictions. These
differences are all due to the significantly different dynamics of the flow.

Finally, figure 6(c) shows the reconstructed Vy/V∞ in comparison to the ground truth for the 350th and
700th time steps in the prediction phase. In general, the main features of the velocity field are well-preserved.
However, there are slight shifts in the domain and phase of the values in the predictions. In conclusion, the
ESN is capable of preserving the very diverse dynamics of the particular flow in 4V2H array even after 700
time steps. This suggests that the quality of the predictions does not degrade over time and is stable.
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Figure 6. Results of predictions for 4V2H array.

3.4. Co-shedding flow
The 6V2H array is the final example that is taken for the predictions in this study. For this case, due to the
larger vertical distance between the cylinders, the upper and lower cylinders in the first column, and the three
cylinders in the second column, each produces its own individual vortex street behind the array. However,
while the three vortex streets of the second column all have a shedding frequency of 15Hz, the two vortex
streets of the first column in the upper and lower edges have a higher frequency of 18Hz. From the spatial
distribution of the POD modes in the appendix in figure 17, it is apparent that other than the frequency, the
synchronization of the vortex streets with each other is changing in time as well. The first and second modes
show the time instants when the three vortex streets of the cylinders in the second column have phase
synchronization, while the third and fourth modes show the time steps when the central cylinder in the
second column oscillates with a 90-degree phase shift compared to the two neighboring vortex streets. This is
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Figure 7. Results of predictions for 6V2H array.

very much clear in the ground truth TCPM of the a1 and a3 in figure 7(a), where the amplitude of
oscillations in a1 is only large when the amplitude is smaller for the a3 and vise versa. One can see this
phenomenon in the predicted TCPM of the aforementioned modes as well. This indicates that the ESN is not
only able to reconstruct similar predictions with the ground truth but also grasps the relationship between
the oscillations of the different modes and imitates it in its own predictions.

Figure 7(b) shows the hyperparameters of the best predictions for each random seed. The best prediction
is for the set of hyperparameters with n= 5, INS= 7, SR= 0.8, and LR= 0.7, which is shown by the
highlighted square. The general trend of the best hyperparameters is similar to the case of the 4V2H array.
The faster dynamics of the 6V2H array seem to push more toward the higher INS values as the favorable
choice. Moreover, higher LR and SR values become more predominant among the best predictions as well.
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Figure 8. Average WPS values for the ESN predictions with respect to the hyperparameters for 2V2H, 4V2H, and 6V2H arrays at
the top, middle, and bottom, respectively.

Finally, the reconstructed Vy/V∞ by the ESN, along with their ground truth counterparts for the 350th
and 700th time steps, are shown in figure 7(c). The predictions seem to have slightly exaggerated values in
general. However, the general features of the flow dynamics are well-preserved, and there is no significant
deviation from the ground truth long after predictions have started.

3.5. Discussion
Figure 8 shows the average WPS with respect to the hyperparameters for the 2V2H, 4V2H, and 6V2H arrays
at the top, middle, and bottom, respectively. It should be noted that this is unlike the previous
hyperparameter figures, where only the best predictions of each random seed were shown. Generally, shifting
between arrays results in clear differences in the average WPS distribution due to variations in the dynamics
of the flow. Evidently, high LR values are not favorable for the slow dynamics of the 2V2H array at all.
Moreover, compared to the other two arrays, 2V2H will not favor high INS values for the ESN as well. Again,
this is related to the slow dynamics of its flow, which prevents the input signals from having a strong effect on
the dynamics of the reservoir in the ESN for accurate prediction fidelity. Moving to the 4V2H and 6V2H
arrays, it is evident that as the speed of the flow dynamics increases, higher INS, LR, and SR values result in
better predictions. High INS values are, in particular, essential to prevent the oscillations from degrading as
one moves further in the prediction phase. Whereas, high LR values are essential to keep up with the fast
oscillations in the signals.

Figure 9 shows the average Vy/V∞ fields of the ground truth and predictions for the three arrays. Clearly,
behind the array at the center for 2V2H, there are some exaggerated up and downward-directed flows in the
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Figure 9. Average vertical velocity fields for the ground truth (top) and best prediction (bottom) for 2V2H, 4V2H, and 6V2H
arrays at the left, middle, and right, respectively.

predictions. This is due to the very unsteady and also slow dynamics of the flow for this case, which prevents
the network from acquiring enough samples to produce predictions that align more accurately with the
baseline average of the oscillations. In contrast, for the 4V2H and 6V2H arrays, the average fields align well
with the ground truth even when they are significant asymmetric structures in the case of 4V2H.

While the average fields are very important in the assessment of prediction quality, the oscillations
around these average values in the velocity field are as much important as well. In this regard, figure 10 shows
the standard deviation of the values in the Vy/V∞ fields for the ground truth and prediction of all three
arrays. Evidently, the predictions for all three arrays produce quite statistically well-aligned oscillations in the
field, and standard deviation values are approximated well. This is due to the fact that for all three arrays, the
ESN can produce oscillations that neither degrade nor over-exaggerate for the entire span of the prediction.
Figure 11 shows the PDF of the Vy/V∞ fields in the predictions and ground truth for the three arrays.
Apparently, there is a general agreement between the PDF values of the prediction and ground truth for all
three arrays in the moderate ranges of Vy/V∞. However, the ESN tends to produce slightly higher
probabilities for more exaggerated velocity values in the field. With careful observation, this can be seen in
the average fields in figure 9 as well.

Finally, in order to have a solid idea about the quality of the predictions from a deterministic point of
view, figure 12 shows the correlation coefficient between the ground truth and predicted Vy/V∞ fields
during the entire prediction phase for all three arrays. Clearly, the 2V2H array has higher correlation values
in general, but this is due to the fact that in this array, a large portion of the flow field behind is simply part of
the free stream and not included in the oscillations. Besides that, all three arrays have an interestingly
oscillatory nature for their correlation curves. One can even suggest that the period of these oscillations tends
to remain quite constant for the entire 700 time steps, especially for the 6V2H array. This shows that there
might be a physical reason for the period of oscillations in the flow. One can find a clear similarity between
the period of these oscillations and the period of large-scale vortex shedding in the case of single bluff body
flow for the 2V2H array. This might suggest that there exists a background weak slow dynamics in the 4V2H
and 6V2H arrays like there is in the 2V2H array as well, which somehow affects the oscillations of the
individual vortex streets in the flow field.
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Figure 10. Standard deviation of the vertical velocity fields for the ground truth (top) and best prediction (bottom) for 2V2H,
4V2H, and 6V2H arrays at the left, middle, and right, respectively.

Figure 11. Probability density function of the best prediction vs the respective ground truth for 2V2H, 4V2H, and 6V2H arrays at
the left, middle, and right, respectively.

Figure 12. The temporal fluctuation of the correlation values between the best prediction set of each array and their respective
ground truth for the entire 700 prediction time steps.
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4. Conclusion

This study attempted to predict the turbulent flow behind cylinder arrays by the application of ESNs. For this
purpose, experimental data of the flow behind three arrays of seven cylinders are chosen. Due to the
difference in the distance between the cylinders, these three arrays represent three different flow regimes of
single bluff body, transient, and co-shedding flow, respectively. This provided the opportunity to examine the
predictive potential of the ESN in different flow dynamics, which are all, in essence, vortex shedding behind
bluff bodies. However, they have very different dynamics and degrees of complexity. The ESN algorithm was
chosen for the current study due to its ability to handle time series and its simple structure, which supports
the theory that a reservoir with random connections between neurons can learn actual physical information
in chaotic dynamics. The flow data was reduced by POD and then the Time Coefficients of the PODModes
(TCPM)s were used for prediction by the ESN. The ESN consisted of 3000 neurons, and its main three
hyperparameters, LR, SR, and INS, were varied in order to achieve the best performance. WPS of the
predicted TCPM, which is a combination of deterministic and statistical convergence of the predictions to
the ground truth, was chosen as the optimization parameter.

The best predictions were found to be for INS= 0.1, SR= 0.1, and LR= 0.3 for the bluff body wake in
the 2V2H array, while the transient flow in the 4V2H array had the best outcome for INS= 15, SR= 0.9, and
LR= 0.8, and finally for the co-shedding regime of the 6V2H array INS= 7, SR= 0.8, and LR= 0.7 had the
best prediction. In general, for the slow and unsteady dynamics of the 2V2H, low LR values and relatively
lower INS values had the best predictions. However, as the dynamics of the flow speed up in 4V2H and 6V2H
arrays, better predictions tend to happen for higher LR and INS values. This was due to the necessity of faster
reservoir update and greater input effect in order to cope with such fast and chaotic dynamics.

For all three arrays, the predictions were very close models of the oscillations in the ground truth, but the
deterministic exact alignment was only partially possible. Moreover, the ESN also successfully imitated the
interconnection between the oscillations of different modes. It was also interesting that the ESN was capable
of stable prediction that could long continue without degradation or exaggeration in their values. The
reconstructed velocity fields aligned well with the ground truth in terms of the average values, standard
deviations, and PDF estimates. However, the deterministic alignment of the reconstructed velocity fields was
periodically oscillating over time.

Last but not least, the results of the current study can be continued in several directions in the future.
Given the quality of predictions by the ESN in the current study for such chaotic dynamics, ESNs and, more
generally, reservoir computing can receive more attention from the community in comparison to much more
complex algorithms that might not necessarily result in better outcomes. Moreover, the conclusions of the
study regarding the best hyperparameters for different flow dynamics can provide a good foothold for
designing more advanced algorithms that can overcome the shortcomings of reservoir computing. Finally, it
could be very interesting to try to predict turbulent flow with a kind of forever-evolving dynamics that never
repeats itself in the course of time. A very good example, perhaps, is the turbulent Rayleigh-Bénard
convection, with its extremely complex and chaotic dynamics [36, 37].

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Acknowledgment

This work is supported by the Carl Zeiss Foundation under the Project No. P 2018-02-001 ‘DeepTurb-Deep
Learning in and of Turbulence.’ The authors would like to thank Florian Heyder and Jörg Schumacher for
fruitful discussions and providing the ESN.

14



Mach. Learn.: Sci. Technol. 5 (2024) 035005 M Sharifi Ghazijahani and C Cierpka

Appendix

Figure 13. The results of optimization of the ESN based on the weighted minimum mean squared error (red) and weighted
minimum Kullback–Leibler divergence (yellow) for the 6V2H array.

Figure 14. Probability density function of the best prediction based on the weighted prediction score (WPS) and
Kullback–Leibler divergence (KLD) vs the respective ground truth for the 6V2H array.

Figure 15. The dominant frequencies of time coefficients of the first 25 POD modes for the ground truth data and the predictions
for 2V2H, 4V2H, and 6V2H arrays.
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Figure 16. The frequency spectrum of the ground truth and prediction for mode 3 of 4V2H array.

Figure 17. The first ten spatial POD modes for 2V2H, 4V2H, and 6V2H arrays at the left, middle, and right, respectively.

Figure 18. Ground truth and prediction of the temporal coefficients of modes 20, 40, 60, 80, 100 for 2V2H array. The predictions
are for the network with the optimized set of hyperparameters with RS= 19, INS= 0.1, SR= 0.1, and LR= 0.3. The first half of
the data with the gray background shows the time steps that are used for the training of the ESN.
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Figure 19. Ground truth and prediction of the temporal coefficients of modes 20, 40, 60, 80, 100 for 4V2H array. The predictions
are for the network with the optimized set of hyperparameters with RS= 21, INS= 15, SR= 0.9, and LR= 0.8. The first half of
the data with the gray background shows the time steps that are used for the training of the ESN.

Figure 20. Ground truth and prediction of the temporal coefficients of modes 20, 40, 60, 80, 100 for 6V2H array. The predictions
are for the network with the optimized set of hyperparameters with RS= 5, INS= 7, SR= 0.8, and LR= 0.7. The first half of the
data with the gray background shows the time steps that are used for the training of the ESN.
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