Dissertations from 2018

Anzahl der Treffer: 697
Erstellt: Tue, 16 Jul 2024 23:03:27 +0200 in 0.1086 sec


Bohm, Sebastian; Grunert, Malte; Honig, Hauke; Wang, Dong; Schaaf, Peter; Runge, Erich; Zhong, Jinhui; Lienau, Christoph
Optical properties of nanoporous gold sponges using model structures obtained from three-dimensional phase-field Simulation. - In: 2021 Photonics & Electromagnetics Research Symposium (PIERS), (2021), S. 517-523

Nanoporous sponge structures show fascinating optical properties related to a strong spatial localization of field modes and a resulting strong field enhancement. In this work, a novel efficient method for the generation of three-dimensional nanoporous sponge structures using time-resolved phase-field simulations is presented. The algorithm for creating the geometries and the underlying equations are discussed. Different sponge geometries are generated and compared with sponges that have been experimentally measured using FIB tomography. Meaningful parameters are defined for the comparison of the geometric properties of the random sponge structures. In addition, the optical properties of the simulated sponges are compared with the experimentally measured sponges. It is shown that a description using effective media does not provide a good agreement to the actual spectra. This shows that the optical properties are largely determined by the local structures. In contrast, the numerically obtained spectra of the phase-field sponge models accounting for the real-space structure show excellent agreement with the spectra of the experimentally measured sponges.



https://doi.org/10.1109/PIERS53385.2021.9694971
Wang, Qi; Cheng, Xing; Sun, Yukun; Sun, Zaicheng; Wang, Dong; Chen, Ge; Schaaf, Peter
A synergetic effect between photogenerated carriers and photothermally enhanced electrochemical urea-assisted hydrogen generation on the Ni-NiO/nickel foam catalyst. - In: Materials advances, ISSN 2633-5409, Bd. 2 (2021), 6, S. 2104-2111

The urea-assisted water electrolysis reactions are of great significance for solving the increasingly serious energy crisis and environmental pollution. Recently, the photo-driven effect strategy has been demonstrated to be an efficient external driving force for improving electrocatalytic activities. Herein, we synthesized Ni-NiO heterostructured nanosheet arrays grown on Ni foam (denoted as Ni-NiO/NF) as a bifunctional electrocatalyst enhancing the urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) activities simultaneously under light irradiation. Moreover, when the catalyst is used in a two-electrode system for the urea-assisted water electrolysis reaction, the cell potential could be reduced to 1.48 V to achieve the current density of 10 mA cm-2 after exposure to light irradiation, as well as remarkable stability. Our studies demonstrate that the enhancement of the HER & UOR activities is attributed to a synergetic effect between photogenerated carriers and photothermy.



https://doi.org/10.1039/D1MA00038A
Cheng, Pengfei; Kampmann, Ronald; Wang, Dong; Sinzinger, Stefan; Schaaf, Peter
Tailoring patterned visible-light scattering by silicon photonic crystals. - In: ACS applied materials & interfaces, ISSN 1944-8252, Bd. 13 (2021), 50, S. 60319-60326

Searching for the relationship between the nanostructure and optical properties has always been exciting the researchers in the field of optics (linear optics as well as non-linear optics), energy harvesting (anti-reflective Si solar cells, perovskite solar cells, ..., etc.), and industry (anti-reflection coating on car windows, sunglasses, etc.). In this work, we present an approach for nanostructuring the silicon substrate to silicon photonic crystals. By precisely controlling the etching time and etching path after using nanoimprint lithography, ordered arrays of inverted Si nanopyramids and Si nanopillars with good homogeneity, uniform surface roughness, high reproducibility of pattern transfer, and a controllable aspect ratio are prepared. Experimental investigation of the optical properties indicates that the reflections of these Si nanostructures are mainly determined by the aspect ratio as well as the period of nanostructures. Furthermore, we have experimentally observed visible-light scattering (V-LS) patterns on inverted Si nanopyramids and Si nanopillars, and their corresponding patterns can be precisely controlled by the patterned nanostructures. The V-LS pattern, background, and "ghost peaks" on the angle-resolved scattering results are caused by constructive interference, destructive interference, and the interference situation between both. This controllable nanopatterning on crystalline Si substrates with precisely tunable optical properties shows great potential for applications in many fields, for example, optics, electronics, and energy.



https://doi.org/10.1021/acsami.1c16182
Schulz, Alexander; Bartsch, Heike; Gutzeit, Nam; Matthes, Sebastian; Glaser, Marcus; Ruh, Andreas; Müller, Jens; Schaaf, Peter; Bergmann, Jean Pierre; Wiese, Steffen
Characterization of reactive multilayer systems deposited on LTCC featuring different surface morphologies. - In: MikroSystemTechnik, (2021), S. 506-510

Baloochi, Mostafa; Shekhawat, Deepshikha; Riegler, Sascha Sebastian; Matthes, Sebastian; Glaser, Marcus; Schaaf, Peter; Bergmann, Jean Pierre; Gallino, Isabella; Pezoldt, Jörg
Influence of initial temperature and convective heat loss on the self-propagating reaction in Al/Ni multilayer foils. - In: Materials, ISSN 1996-1944, Bd. 14 (2021), 24, 7815, insges. 15 S.

A two-dimensional numerical model for self-propagating reactions in Al/Ni multilayer foils was developed. It was used to study thermal properties, convective heat loss, and the effect of initial temperature on the self-propagating reaction in Al/Ni multilayer foils. For model adjustments by experimental results, these Al/Ni multilayer foils were fabricated by the magnetron sputtering technique with a 1:1 atomic ratio. Heat of reaction of the fabricated foils was determined employing Differential Scanning Calorimetry (DSC). Self-propagating reaction was initiated by an electrical spark on the surface of the foils. The movement of the reaction front was recorded with a high-speed camera. Activation energy is fitted with these velocity data from the high-speed camera to adjust the numerical model. Calculated reaction front temperature of the self-propagating reaction was compared with the temperature obtained by time-resolved pyrometer measurements. X-ray diffraction results confirmed that all reactants reacted and formed a B2 NiAl phase. Finally, it is predicted that (1) increasing thermal conductivity of the final product increases the reaction front velocity; (2) effect of heat convection losses on reaction characteristics is insignificant, e.g., the foils can maintain their characteristics in water; and (3) with increasing initial temperature of the foils, the reaction front velocity and the reaction temperature increased.



https://doi.org/10.3390/ma14247815
Wu, Xuping; Chen, Honglei; Luo, Xuemei; Wang, Dong; Schaaf, Peter; Zhang, Guangping
Ultrasensitive strain sensors based on Cu-Al alloy films with voided cluster boundaries. - In: Advanced Materials Technologies, ISSN 2365-709X, Bd. 6 (2021), 12, 2100524, insges. 12 S.

https://doi.org/10.1002/admt.202100524
Cheng, Pengfei; Ziegler, Mario; Ripka, Valentin; Wang, Dong; Wang, Hongguang; Aken, Peter Antonie van; Schaaf, Peter
Bio-inspired self-assembly of large area 3D AgSiO2 plasmonic nanostructures with tunable broadband light harvesting. - In: Applied materials today, ISSN 2352-9407, Bd. 25 (2021), 101238

Tremendous efforts have been made to fabricate large-scale plasmonic nanostructures, which show wide applications in surface plasmon resonance (SPR) sensing, catalytic conversion, photothermal conversion, optoelectronics, photothermal therapy. However, unable to fabricate over 5 cm^2 plasmonic nanostructures with good controllability hinders their further applications. Here, super large-scale (153 cm^2) 3D AgSiO2 hybrid plasmonic nanostructures with adjustable and ultra-broadband light absorption are fabricated by a simple and controllable two-step approach. The metastable atomic layer deposition (MS-ALD) is combined with physical vapor deposition (PVD) to generate these structures in a self-assembly manner. The structures look like coral tentacles. These excellent properties are attributed to multiple forward scatterings and extinction effects produced by Ag@SiO2 nanostructures. Using 3D Ag@SiO2 plasmonic nanostructures as light absorber for bottom-heating-based evaporation, the water evaporation rate remarkably improves seven times under 1 Sun than that in dark condition. Our results pave the avenue for developing super large-scale Ag-based plasmonic nanostructure with potential applications in solar energy conversion.



https://doi.org/10.1016/j.apmt.2021.101238
Sauni Camposano, Yesenia Haydee; Riegler, Sascha Sebastian; Jaekel, Konrad; Schmauch, Jörg; Pauly, Christoph; Schäfer, Christian; Bartsch, Heike; Mücklich, Frank; Gallino, Isabella; Schaaf, Peter
Phase transformation and characterization of 3D reactive microstructures in nanoscale Al/Ni multilayers. - In: Applied Sciences, ISSN 2076-3417, Bd. 11 (2021), 19, 9304, S. 1-13

Reactive multilayer systems represent an innovative approach for potential usage in chip joining applications. As there are several factors governing the energy release rate and the stored chemical energy, the impact of the morphology and the microstructure on the reaction behavior is of great interest. In the current work, 3D reactive microstructures with nanoscale Al/Ni multilayers were produced by alternating deposition of pure Ni and Al films onto nanostructured Si substrates by magnetron sputtering. In order to elucidate the influence of this 3D morphology on the phase transformation process, the microstructure and the morphology of this system were characterized and compared with a flat reactive multilayer system on a flat Si wafer. The characterization of both systems was carried out before and after a rapid thermal annealing treatment by using scanning and transmission electron microscopy of the cross sections, selected area diffraction analysis, and differential scanning calorimetry. The bent shape of multilayers caused by the complex topography of silicon needles of the nanostructured substrate was found to favor the atomic diffusion at the early stage of phase transformation and the formation of two intermetallic phases Al0.42Ni0.58 and AlNi3, unlike the flat multilayers that formed a single phase AlNi after reaction.



https://doi.org/10.3390/app11199304
Biele, L.; Schmid, F.; Schaaf, Peter
Temperatur- und Druckabhängigkeit des elektrischen Kontaktwiderstands von Kupfer. - In: DVS Congress 2021, (2021), S. 536-542

Yan, Yong; Liu, Haocen; Liu, Chunyue; Zhao, Yuguo; Liu, Shuzhen; Wang, Dong; Fritz, Mathias; Ispas, Adriana; Bund, Andreas; Schaaf, Peter; Wang, Xiayan
Efficient preparation of Ni-M (M = Fe, Co, Mo) bimetallic oxides layer on Ni nanorod arrays for electrocatalytic oxygen evolution. - In: Applied materials today, ISSN 2352-9407, Bd. 25 (2021), 101185

Fabrication of economic and high-performance electrodes for electrocatalytic oxygen evolution reaction (OER) accounts for a crucial issue associated with developing powerful and practical water splitting systems. In this work, free-standing Ni/Ni-M (M = Fe, Co, Mo) bimetallic oxides core/shell nanorod arrays (Ni/Ni-M NRAs) were prepared through electroless deposition of transition metal species on black nickel sheet (nickel nanorod arrays (Ni NRAs)) followed by electrochemical oxidation. All three types of Ni/Ni-M NRAs demonstrated enhanced electrocatalytic activity toward oxygen evolution reactions (OER). Especially, Ni/Ni-Fe NRAs electrode exhibit small onset potential of 1.535 V at current density of 10 mA&hahog;cm^-2. In contrast, the OER durability of these three samples was distinct. At 500 mV constant overpotential, the current density loss in OER of Ni/Ni-Fe NRAs was merely 13.5% for a period of 20000 s; but Ni/Ni-Mo and Ni/Ni-Co NRAs had almost disappeared catalytic activity under the identical conditions. According to many reports, the results were different for the superior OER stability of Ni-based bimetallic catalysts. Electrochemical analysis revealed that the NRAs structure dramatically improves charge transfer efficiency and electrochemically active surface area (ECSA). The present study might provide a new insight to design and fabricate more practical and high-performance Ni-based electrodes for OER.



https://doi.org/10.1016/j.apmt.2021.101185