Publications at the Institute of Mathematics

Results: 2092
Created on: Wed, 17 Jul 2024 23:06:48 +0200 in 0.0715 sec


âCurgus, Branko; Derkach, Volodymyr; Trunk, Carsten
Indefinite Sturm-Liouville operators in polar form. - In: Integral equations and operator theory, ISSN 1420-8989, Bd. 96 (2024), 2, S. 1-58

https://doi.org/10.1007/s00020-023-02746-3
Drücker, Svenja; Lanza, Lukas; Berger, Thomas; Reis, Timo; Seifried, Robert
Experimental validation for the combination of funnel control with a feedforward control strategy. - In: Multibody system dynamics, ISSN 1573-272X, Bd. 0 (2024), 0, S. 1-19

Current engineering design trends, such as lightweight machines and human-machine interaction, often lead to underactuated systems. Output trajectory tracking of such systems is a challenging control problem. Here, we use a two-design-degree of freedom control approach by combining funnel feedback control with feedforward control based on servo-constraints. We present experimental results to verify the approach and demonstrate that the addition of a feedforward controller mitigates drawbacks of the funnel controller. We also present new experimental results for the real-time implementation of a feedforward controller based on servo-constraints on a minimum phase system.



https://doi.org/10.1007/s11044-024-09976-2
Honecker, Maria Christine; Gernandt, Hannes; Wulff, Kai; Trunk, Carsten; Reger, Johann
Feedback rectifiable pairs and stabilization of switched linear systems. - In: Systems & control letters, ISSN 1872-7956, Bd. 186 (2024), 105755, S. 1-10

We address the feedback design problem for switched linear systems. In particular we aim to design a switched state-feedback such that the resulting closed-loop subsystems share the same eigenstructure. To this effect we formulate and analyse the feedback rectification problem for pairs of matrices. We present necessary and sufficient conditions for the feedback rectifiability of pairs for two subsystems and give a constructive procedure to design stabilizing state-feedback for a class of switched systems. In particular the proposed algorithm provides sets of eigenvalues and corresponding eigenvectors for the closed-loop subsystems that guarantee stability for arbitrary switching. Several examples illustrate the characteristics of the problem considered and the application of the proposed design procedure.



https://doi.org/10.1016/j.sysconle.2024.105755
Heri, Sebastian; Lieb, Julia; Rosenthal, Joachim
Self-dual convolutional codes. - In: IEEE transactions on information theory, Bd. 70 (2024), 2, S. 950-963

This paper investigates the concept of self-dual convolutional codes. We derive the basic properties of this interesting class of codes and we show how some of the techniques to construct self-dual linear block codes generalize to self-dual convolutional codes. As for self-dual linear block codes we are able to give a complete classification for some small parameters.



https://doi.org/10.1109/TIT.2023.3343108
Eichfelder, Gabriele; Quintana, Ernest
Set-based robust optimization of uncertain multiobjective problems via epigraphical reformulations. - In: European journal of operational research, ISSN 0377-2217, Bd. 313 (2024), 3, S. 871-882

In this paper, we study a method for finding robust solutions to multiobjective optimization problems under uncertainty. We follow the set-based minmax approach for handling the uncertainties which leads to a certain set optimization problem with the strict upper type set relation. We introduce, under some assumptions, a reformulation using instead the strict lower type set relation without sacrificing the compactness property of the image sets. This allows to apply vectorization results to characterize the optimal solutions of these set optimization problems as optimal solutions of a multiobjective optimization problem. We end up with multiobjective semi-infinite problems which can then be studied with classical techniques from the literature.



https://www.sciencedirect.com/science/article/pii/S0377221723007208/pdfft?md5=f5272f8643b0ce953294091001149d0f&pid=1-s2.0-S0377221723007208-main.pdf
Böhme, Thomas; Harant, Jochen; Kriesell, Matthias; Mohr, Samuel; Schmidt, Jens M.
Rooted minors and locally spanning subgraphs. - In: Journal of graph theory, ISSN 1097-0118, Bd. 105 (2024), 2, S. 209-229

Results on the existence of various types of spanning subgraphs of graphs are milestones in structural graph theory and have been diversified in several directions. In the present paper, we consider “local” versions of such statements. In 1966, for instance, D. W. Barnette proved that a 3-connected planar graph contains a spanning tree of maximum degree at most 3. A local translation of this statement is that if G is a planar graph, X is a subset of specified vertices of G such that X cannot be separated in G by removing two or fewer vertices of G, then G has a tree of maximum degree at most 3 containing all vertices of X. Our results constitute a general machinery for strengthening statements about k-connected graphs (for 1 ≤ k ≤ 4) to locally spanning versions, that is, subgraphs containing a set X ⊆ V (G) of a (not necessarily planar) graph G in which only X has high connectedness. Given a graph G and X ⊆ V (G), we say M is a minor of G rooted at X, if M is a minor of G such that each bag of M contains at most one vertex of X and X is a subset of the union of all bags. We show that G has a highly connected minor rooted at X if X ⊆ V (G) cannot be separated in G by removing a few vertices of G. Combining these investigations and the theory of Tutte paths in the planar case yields locally spanning versions of six well-known results about degree-bounded trees, Hamiltonian paths and cycles, and 2-connected subgraphs of graphs.



https://doi.org/10.1002/jgt.23012
Beddig, Rebekka S.; Benner, Peter; Dorschky, Ines; Reis, Timo; Schwerdtner, Paul; Voigt, Matthias; Werner, Steffen W. R.
Structure-preserving model reduction for dissipative mechanical systems. - In: Calm, smooth and smart, (2024), S. 209-230

Suppressing vibrations in mechanical systems, usually described by second-order dynamical models, is a challenging task in mechanical engineering in terms of computational resources even nowadays. One remedy is structure-preserving model order reduction to construct easy-to-evaluate surrogates for the original dynamical system having the same structure. In our work, we present an overview of recently developed structure-preserving model reduction methods for second-order systems. These methods are based on modal and balanced truncation in different variants, as well as on rational interpolation. Numerical examples are used to illustrate the effectiveness of all described methods.



https://doi.org/10.1007/978-3-031-36143-2_11
Espuny Díaz, Alberto; Janzer, Barnabás; Kronenberg, Gal; Lada, Joanna
Long running times for hypergraph bootstrap percolation. - In: European journal of combinatorics, Bd. 115 (2024), 103783, S. 1-18

Consider the hypergraph bootstrap percolation process in which, given a fixed r-uniform hypergraph H and starting with a given hypergraph G0, at each step we add to G0 all edges that create a new copy of H. We are interested in maximising the number of steps that this process takes before it stabilises. For the case where H = Kr+1(r) with r ≥ 3, we provide a new construction for G0 that shows that the number of steps of this process can be of order Θ (nr). This answers a recent question of Noel and Ranganathan. To demonstrate that different running times can occur, we also prove that, if H is K4(3) minus an edge, then the maximum possible running time is 2n − ⌊log2(n−2)⌋ − 6. However, if H is K5(3) minus an edge, then the process can run for Θ (n3) steps.



https://doi.org/10.1016/j.ejc.2023.103783
Eichfelder, Gabriele; Stein, Oliver
Limit sets in global multiobjective optimization. - In: Optimization, ISSN 1029-4945, Bd. 73 (2024), 1, S. 1-27

Inspired by the recently introduced branch-and-bound method for continuous multiobjective optimization problems from G. Eichfelder, P. Kirst, L. Meng, O. Stein [A general branch-and-bound framework for continuous global multiobjective optimization. J Glob Optim. 2021;80:195-227], we study for a general class of branch-and-bound methods in which sense the generated terminal enclosure and the terminal provisional nondominated set approximate the nondominated set when the termination accuracy is driven to zero. Our convergence analysis of the enclosures relies on constructions from the above paper, but is self-contained and also covers the mixed-integer case. The analysis for the provisional nondominated set is based on general convergence properties of the epsilon-nondominated set, and hence it is also applicable to other algorithms which generate such points. Furthermore, we discuss post-processing steps for the terminal enclosure and provide numerical illustrations for the cases of two and three objective functions.



https://doi.org/10.1080/02331934.2022.2092479
Goor, Pieter; vanMahony, Robert; Schaller, Manuel; Worthmann, Karl
Reprojection methods for Koopman-based modelling and prediction. - In: CDC 2023 Singapore, (2023), S. 315-321

Extended Dynamic Mode Decomposition (eDMD) is a powerful tool to generate data-driven surrogate models for the prediction and control of nonlinear dynamical systems in the Koopman framework. In eDMD a compression of the lifted system dynamics on the space spanned by finitely many observables is computed, in which the original space is embedded as a low-dimensional manifold. While this manifold is invariant for the infinite-dimensional Koopman operator, this invariance is typically not preserved for its eDMD-based approximation. Hence, an additional (re-)projection step is often tacitly incorporated to improve the prediction capability. We propose a novel framework for consistent reprojectors respecting the underlying manifold structure. Further, we present a new geometric reprojector based on maximum-likelihood arguments, which significantly enhances the approximation accuracy and preserves known finite-data error bounds.



https://doi.org/10.1109/CDC49753.2023.10383796