Veröffentlichungslisten der Fachgebiete finden Sie auf deren Seiten.

Anzahl der Treffer: 2305
Erstellt: Sun, 19 May 2024 18:01:02 +0200 in 0.0644 sec


Rothe, Karl; Néel, Nicolas; Kröger, Jörg
Unveiling the nature of atomic defects in graphene on a metal surface. - In: Beilstein journal of nanotechnology, ISSN 2190-4286, Bd. 15 (2024), S. 416-425

Low-energy argon ion bombardment of graphene on Ir(111) induces atomic-scale defects at the surface. Using a scanning tunneling microscope, the two smallest defects appear as a depression without discernible interior structure suggesting the presence of vacancy sites in the graphene lattice. With an atomic force microscope, however, only one kind can be identified as a vacancy defect with four missing carbon atoms, while the other kind reveals an intact graphene sheet. Spatially resolved spectroscopy of the differential conductance and the measurement of total-force variations as a function of the lateral and vertical probe–defect distance corroborate the different character of the defects. The tendency of the vacancy defect to form a chemical bond with the microscope probe is reflected by the strongest attraction at the vacancy center as well as by hysteresis effects in force traces recorded for tip approach to and retraction from the Pauli repulsion range of vertical distances.



https://doi.org/10.3762/bjnano.15.37
Bohm, Sebastian; Phi, Hai Binh; Dittrich, Lars; Runge, Erich
Chip-integrated non-mechanical microfluidic pump driven by electrowetting on dielectrics. - In: Lab on a chip, ISSN 1473-0189, Bd. 0 (2024), 0, insges. 13 S.

A microfluidic pump is presented that generates its pumping action via the EWOD (electrowetting-on-dielectric) effect. The flow is generated by the periodic movement of liquid-vapor interfaces in a large number (≈10^6) of microcavities resulting in a volume change of approx. 0.5 pl per cavity per pump stroke. The total flow resulting from all microcavities adds up to a few hundred nanolitres per cycle. Passive, topologically optimized, non-mechanical Tesla valves are used to rectify the flow. As a result, the micropump operates without any moving components. The dimensioning, fabrication, and characterization process of the micropump are described. Device fabrication is done using conventional manufacturing processes from microsystems technology, enabling cost-effective mass production on wafer-level without additional assembly steps like piezo chip-level bonding, etc. This allows for direct integration into wafer-based microfluidic or lab-on-a-chip applications. Furthermore, first measurement results obtained with prototypes of the micropump are presented. The voltage- and frequency-dependent pump performance is determined. The measurements show that a continuous flow rate larger than 0.2 ml min^−1 can be achieved at a maximum pump pressure larger than 12 mbar.



https://doi.org/10.1039/D4LC00178H
Noßmann, Bastian; Yu, Zuodong; Das, Ankur; Schulte, Stefan; Néel, Nicolas; Wu, Chien-Te; Kirchner, Stefan; Kröger, Jörg
Yu-Shiba-Rusinov states induced by single Fe atoms on reconstructed compound superconductor V3Si. - In: Surface science, ISSN 1879-2758, Bd. 746 (2024), 122504, S. 1-10

Reconstructed surfaces of the A15-compound superconductor V3Si(100) that are possibly induced by the segregation of bulk impurities serve as platforms to study the dependence of Yu-Shiba-Rusinov states induced by a single Fe atom on the adsorption site. Their number, energy and electron-hole asymmetry vary strongly with the atomic environment of the Fe atom. These variations are indicative of different Fe d-orbitals being active in the site-dependent exchange coupling with the substrate Cooper pairs. Spatially resolved spectroscopy gives rise to a short decay length of the Yu-Shiba-Rusinov states and thereby suggests the three-dimensional character of the scattering process underlying the bound states.



https://doi.org/10.1016/j.susc.2024.122504
Phani Kumar, Bandaru V. N.; Lobo, Nitin P.; Mattea, Carlos; Stapf, Siegfried
Exploring crystal-phase molecular dynamics of the low-viscous mesogen 6CHBT: a combined FFC and high-field NMR relaxometry investigation. - In: The journal of physical chemistry, ISSN 1520-5207, Bd. 128 (2024), 16, S. 3997-4007

The molecular dynamics study of thermotropic mesogens exhibiting the crystal phases is valuable in unraveling the complex global (collective) and local (noncollective) motions executed by liquid crystal molecules, which would further advance the existing knowledge on orientationally disordered crystalline (ODIC) phases. Toward the fulfillment of such a task, a combined nuclear magnetic resonance (NMR) relaxometry approach employing the fast field cycling (FFC) NMR (10 kHz-30 MHz) and high-field pulsed NMR (400 MHz) techniques is utilized to sample the broad frequency range offered by molecular motions in the crystal phase of 4-(trans-4′-n-hexylcyclohexyl)-isothiocyanatobenzene (6CHBT). The validity of the observed relaxation data is tested and interpreted by the Bloembergen-Purcell-Pound (BPP) model involving the superposition of four mutually independent Lorentzian spectral densities, reflecting molecular dynamical processes on different time scales. The salient feature of the detailed analysis reveals that the lengthening of temporal dynamics in the crystal phase due to molecular rotations by jumps, which are of intermolecular origin, is evident and further supports the presence of collective-like local dynamics. The analysis does permit decoupling of the molecular reorientations about their short axes (∼100 ns) as well as long axes (∼50 ns) and methyl group rotations (∼0.5 ns) on distinct time scales. The activation energies for reorientations about the short axes and methyl group rotations are found to be 27.3 ± 2.7 and 15.8 ± 1.1 kJ/mol, respectively. The fast methyl rotations in the crystal phase of 6CHBT obtained from FFC NMR are further well complemented by high-field NMR, where 1H NMR line shapes are relatively narrow when compared to those of the nematic phase.



https://doi.org/10.1021/acs.jpcb.3c08259
Zhao, Lanqing; Hou, Minjie; Ren, Kun; Yang, Dongrong; Li, Fupeng; Yang, Xiecheng; Zhou, Yingjie; Zhang, Da; Liu, Shan; Lei, Yong; Liang, Feng
Hot-pressing enhances mechanical strength of PEO solid polymer electrolyte for all-solid-state sodium metal batteries. - In: Small Methods, ISSN 2366-9608, Bd. 0 (2024), 0, 2301579, S. 1-9

Poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) are widely utilized in all-solid-state sodium metal batteries (ASSSMBs) due to their excellent flexibility and safety. However, poor ionic conductivity and mechanical strength limit its development. In this work, an emerging solvent-free hot-pressing method is used to prepare mechanically robust PEO-based SPE, while sodium superionic conductors Na3Zr2Si2PO12 (NZSP) and NaClO4 are introduced to improve ionic conductivity. The as-prepared electrolyte exhibits a high ionic conductivity of 4.42 × 10−4 S cm−1 and a suitable electrochemical stability window (4.5 V vs Na/Na+). Furthermore, the SPE enables intimate contact with the electrode. The Na||Na3V2(PO4)3C ASSSMB delivers a high-capacity retention of 97.1% after 100 cycles at 0.5 C and 60 ˚C, and exhibits excellent Coulombic efficiency (CE) (close to 100%). The ASSSMB with the 20 µm thick electrolyte also demonstrates excellent cyclic stability. This study provides a promising strategy for designing stable polymer-ceramic composite electrolyte membranes through hot-pressing to realize high-energy-density sodium metal batteries.



https://doi.org/10.1002/smtd.202301579
Yang, Xiecheng; Zhang, Dantong; Zhao, Lanqing; Peng, Chao; Ren, Kun; Xu, Changfan; Liu, Pan; Zhou, Yingjie; Lei, Yong; Yang, Bin; Xue, Dongfeng; Liang, Feng
Upgrading cycling stability and capability of hybrid Na-CO2 batteries via tailoring reaction environment for efficient conversion CO2 to HCOOH. - In: Advanced energy materials, ISSN 1614-6840, Bd. 14 (2024), 16, 2304365, S. 1-12

Rechargeable Na-CO2 batteries are considered to be an effective way to address the energy crisis and greenhouse effect due to their dual functions of CO2 fixation/utilization and energy storage. However, the insolubility and irreversibility of solid discharge products lead to poor discharge capacity and poor cycle performance. Herein, a novel strategy is proposed to enhance the electrochemical performance of hybrid Na-CO2 batteries, using water-in-salt electrolyte (WiSE) to establish an optimal reaction environment, regulate the CO2 reduction pathway, and ultimately convert the discharge product of the battery from Na2CO3 to formic acid (HCOOH). This strategy effectively resolves the issue of poor reversibility, allowing the battery to exhibit excellent cycle performance (over 1200 cycles at 30 ˚C), especially under low-temperature conditions (2534 cycles at −20 ˚C). Furthermore, density functional theory (DFT) calculations and experiments indicate that by adjusting the relative concentration of H/O atoms at the electrolyte/catalyst interface, the CO2 reduction pathway in the battery can be regulated, thus effectively enhancing CO2 capture capability and consequently achieving an ultra-high discharge specific capacity of 148.1 mAh cm−2. This work effectively promotes the practical application of hybrid Na-CO2 batteries and shall provide a guidance for converting CO2 into products with high-value-added chemicals.



https://doi.org/10.1002/aenm.202304365
Qiu, Wenbo; Wang, Zidong; He, Shijiang; Zhao, Huaping; Lei, Yong
Recent progress and future prospects of high-entropy materials for battery applications. - In: Journal of semiconductors, ISSN 2058-6140, Bd. 45 (2024), 3, 030202, S. 1-5

https://doi.org/10.1088/1674-4926/45/3/030202
Qian, Yudan; Zhou, Zhiming; Zhang, Qingcheng; Zhao, Huaping; Chen, Heng; Han, Jintong; Wan, Haiting; Jin, Huile; Wang, Shun; Lei, Yong
Boosting the energy density of bowl-like MnO2carbon through lithium-intercalation in a high-voltage asymmetric supercapacitor with “water-in-salt” electrolyte. - In: Small, ISSN 1613-6829, Bd. 0 (2024), 0, 2310037, S. 1-11

Highly concentrated “‘water-in-salt”’ (WIS) electrolytes are promising for high-performance energy storage devices due to their wide electrochemical stability window. However, the energy storage mechanism of MnO2 in WIS electrolytes-based supercapacitors remains unclear. Herein, MnO2 nanoflowers are successfully grown on mesoporous bowl-like carbon (MBC) particles to generate MnO2/MBC composites, which not only increase electroactive sites and inhibit the pulverization of MnO2 particles during the fast charging/discharging processes, but also facilitate the electron transfer and ion diffusion within the whole electrode, resulting in significant enhancement of the electrochemical performance. An asymmetric supercapacitor, assembled with MnO2/MBC and activated carbon (AC) and using 21 m LiTFSI solution as the WIS electrolyte, delivers an ultrahigh energy density of 70.2 Wh kg−1 at 700 W kg−1, and still retains 24.8 Wh kg−1 when the power density is increased to 28 kW kg−1. The ex situ XRD, Raman, and XPS measurements reveal that a reversible reaction of MnO2 + xLi+ + xe−↔LixMnO2 takes place during charging and discharging. Therefore, the asymmetric MnO2/MBC//AC supercapacitor with LiTFSI electrolyte is actually a lithium-ion hybrid supercapacitor, which can greatly boost the energy density of the assembled device and expand the voltage window.



https://doi.org/10.1002/smll.202310037
Hannappel, Thomas; Shekarabi, Sahar; Jaegermann, Wolfram; Runge, Erich; Hofmann, Jan Philipp; Krol, Roel van de; May, Matthias M.; Paszuk, Agnieszka; Hess, Franziska; Bergmann, Arno; Bund, Andreas; Cierpka, Christian; Dreßler, Christian; Dionigi, Fabio; Friedrich, Dennis; Favaro, Marco; Krischok, Stefan; Kurniawan, Mario; Lüdge, Kathy; Lei, Yong; Roldán Cuenya, Beatriz; Schaaf, Peter; Schmidt-Grund, Rüdiger; Schmidt, W. Gero; Strasser, Peter; Unger, Eva; Montoya, Manuel Vasquez; Wang, Dong; Zhang, Hongbin
Integration of multijunction absorbers and catalysts for efficient solar-driven artificial leaf structures: a physical and materials science perspective. - In: Solar RRL, ISSN 2367-198X, Bd. 0 (2024), 0, 2301047, S. 1-88

Artificial leaves could be the breakthrough technology to overcome the limitations of storage and mobility through the synthesis of chemical fuels from sunlight, which will be an essential component of a sustainable future energy system. However, the realization of efficient solar-driven artificial leaf structures requires integrated specialized materials such as semiconductor absorbers, catalysts, interfacial passivation, and contact layers. To date, no competitive system has emerged due to a lack of scientific understanding, knowledge-based design rules, and scalable engineering strategies. Here, we will discuss competitive artificial leaf devices for water splitting, focusing on multi-absorber structures to achieve solar-to-hydrogen conversion efficiencies exceeding 15%. A key challenge is integrating photovoltaic and electrochemical functionalities in a single device. Additionally, optimal electrocatalysts for intermittent operation at photocurrent densities of 10-20 mA cm^-2 must be immobilized on the absorbers with specifically designed interfacial passivation and contact layers, so-called buried junctions. This minimizes voltage and current losses and prevents corrosive side reactions. Key challenges include understanding elementary steps, identifying suitable materials, and developing synthesis and processing techniques for all integrated components. This is crucial for efficient, robust, and scalable devices. Here, we discuss and report on corresponding research efforts to produce green hydrogen with unassisted solar-driven (photo-)electrochemical devices. This article is protected by copyright. All rights reserved.



https://doi.org/10.1002/solr.202301047
Shen, Fengxia; Wu, Shuai; Zhao, Pengchong; Li, Yunfei; Miao, Shipeng; Liu, Jianxiong; Ostheimer, David; Hannappel, Thomas; Chen, Tianyou; Shi, Jin
Bipolar membrane Electrolyzer for CO2 electro-reduction to CO in organic electrolyte with NaClO produced as byproduct. - In: Electrochimica acta, ISSN 1873-3859, Bd. 483 (2024), 144056, S. 1-8

A novel electrolyzer has been proposed for CO2 reduction to CO, concurrently generating NaClO as a byproduct at the anode. The cell is divided into two compartments by a bipolar membrane, which plays a pivotal role in the dissociation of H2O into H^+ and OH^−. In the cathode compartment, CO2 is reduced to CO within a neutral organic solution. Simultaneously, in the anode compartment, Cl^− undergoes oxidation to form ClO^− within a basic aqueous solution. The electrolyzer remains stable during 10 h of electrolysis, and the current density reaches 76.35 mA cm^−2 at a potential of -2.4 V (vs SHE), with the Faradaic efficiency of CO formation stable at 93 %. By increasing the product values, CO2 electro-reduction technology can be promoted to industrial applications.



https://doi.org/10.1016/j.electacta.2024.144056