Dissertations from 2018

Anzahl der Treffer: 697
Erstellt: Tue, 16 Jul 2024 23:03:27 +0200 in 0.0748 sec


Glaser, Marcus; Ehlich, Kai; Matthes, Sebastian; Hildebrand, Jörg; Schaaf, Peter; Bergmann, Jean Pierre
Influence of metal surface structures on composite formation during polymer-metal-joining based on reactive Al/Ni multilayer foil. - In: Advanced engineering materials, ISSN 1527-2648, Bd. 0 (2024), 0, insges. 34 S.

Progressive developments in the field of lightweight construction and engineering demand continuous substitution of metals with suitable polymers. However, the combination of dissimilar materials results in a multitude of challenges based on different chemical and physical material properties. Reactive multilayer systems offer a promising joining method for flexible and low-distortion joining of dissimilar joining partners with an energy source introduced directly into the joining zone. Within this publication, hybrid lap joints between semi-crystalline polyamide 6 and surface-structured austenitic steel X5CrNi18-10 (EN 1.4301) were joined using reactive Al/Ni multilayer foils of the type Indium-NanoFoil®. Main objective is to examine possibilities of influencing crack initiation in the foil plane by variation of joining pressure and different metal surface structures with regard to geometry, density and orientation. Thus, the position of foil cracks is superimposed onto the metal structure and associated filling with molten plastic is improved. Consequently, characterisation of occurring crack positions as function of joining pressure and metal structure, analysis of the composite in terms of structural filling and joint strength as well as possible causes of crack initiation are evaluated.



https://doi.org/10.1002/adem.202302254
Mejia Chueca, Maria del Carmen; Winter, Andreas; Abdi, Azadeh; Baumer, Christoph; Ispas, Adriana; Stich, Michael; Riegler, Sascha; Ecke, Gernot; Isaac, Nishchay Angel; Graske, Marcus; Gallino, Isabella; Schaaf, Peter; Jacobs, Heiko O.; Bund, Andreas
A novel method for preparation of Al-Ni reactive coatings by incorporation of Ni nanoparticles into an Al matrix fabricated by electrodeposition in AlCl3:1-eethyl-3-methylimidazolium chloride (1.5:1) ionic liquid containing Ni nanoparticles. - In: Advanced engineering materials, ISSN 1527-2648, Bd. 0 (2024), 0, 2302217, S. 1-17

Al/Ni reactive coatings are fabricated via electrochemical deposition (ECD) at different applied voltages for reactive bonding application. AlCl3:1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) (1.5:1) ionic liquid electrolyte is used as source of Al, whereas Ni is in the bath and incorporated into final coatings as nanoparticles (NPs). Scanning electron microscopy and Auger electron spectroscopy reveal a homogeneous Ni particle dispersion, as well as a high amount of particle incorporation into the Al matrix. A maximum of 37 wt% (22 at%) of Ni is detected via atomic absorption spectroscopy in the Al/Ni coating deposited at −0.1 V from an electrolyte containing 20 g L−1 of Ni NPs. Previous literature show that for bonding application an ideal concentration is around 50 at% of Ni and 50 at% Al. However, this is achieved using high vacuum, time-consuming processes, and costly techniques like evaporation and magnetron sputtering. The ECD used in this work represents a more cost-efficient approach which is not reported up to date for the aforementioned application. The reactivity of the coatings is confirmed by Differential scanning calorimetry. Herein, an exothermic reaction is detected upon the mixing of Al and Ni occurring at high temperatures.



https://doi.org/10.1002/adem.202302217
Hannappel, Thomas; Shekarabi, Sahar; Jaegermann, Wolfram; Runge, Erich; Hofmann, Jan Philipp; Krol, Roel van de; May, Matthias M.; Paszuk, Agnieszka; Hess, Franziska; Bergmann, Arno; Bund, Andreas; Cierpka, Christian; Dreßler, Christian; Dionigi, Fabio; Friedrich, Dennis; Favaro, Marco; Krischok, Stefan; Kurniawan, Mario; Lüdge, Kathy; Lei, Yong; Roldán Cuenya, Beatriz; Schaaf, Peter; Schmidt-Grund, Rüdiger; Schmidt, W. Gero; Strasser, Peter; Unger, Eva; Montoya, Manuel Vasquez; Wang, Dong; Zhang, Hongbin
Integration of multijunction absorbers and catalysts for efficient solar-driven artificial leaf structures: a physical and materials science perspective. - In: Solar RRL, ISSN 2367-198X, Bd. 8 (2024), 11, 2301047, S. 1-49

Artificial leaves could be the breakthrough technology to overcome the limitations of storage and mobility through the synthesis of chemical fuels from sunlight, which will be an essential component of a sustainable future energy system. However, the realization of efficient solar-driven artificial leaf structures requires integrated specialized materials such as semiconductor absorbers, catalysts, interfacial passivation, and contact layers. To date, no competitive system has emerged due to a lack of scientific understanding, knowledge-based design rules, and scalable engineering strategies. Here, we will discuss competitive artificial leaf devices for water splitting, focusing on multi-absorber structures to achieve solar-to-hydrogen conversion efficiencies exceeding 15%. A key challenge is integrating photovoltaic and electrochemical functionalities in a single device. Additionally, optimal electrocatalysts for intermittent operation at photocurrent densities of 10-20 mA cm^-2 must be immobilized on the absorbers with specifically designed interfacial passivation and contact layers, so-called buried junctions. This minimizes voltage and current losses and prevents corrosive side reactions. Key challenges include understanding elementary steps, identifying suitable materials, and developing synthesis and processing techniques for all integrated components. This is crucial for efficient, robust, and scalable devices. Here, we discuss and report on corresponding research efforts to produce green hydrogen with unassisted solar-driven (photo-)electrochemical devices. This article is protected by copyright. All rights reserved.



https://doi.org/10.1002/solr.202301047
Schaaf, Peter; Constantinescu, Catalin; Matei, Andreea
Laser material processing: from fundamental interactions to innovative applications (E-MRS). - In: Applied surface science advances, ISSN 2666-5239, Bd. 21 (2024), 100592, insges. 1 S.

https://doi.org/10.1016/j.apsadv.2024.100592
Zhang, Yuanpeng; Cheng, Pengfei; Wang, Dong; Wang, Hui; Tang, Yongliang; Wang, Wei; Li, Yuhang; Sun, Zeqi; Lv, Wenmei; Liu, Qingxiang
Evaluating the field emission properties of N-type black silicon cold cathodes based on a three-dimensional model. - In: ACS applied materials & interfaces, ISSN 1944-8252, Bd. 16 (2024), 2, S. 2932-2939

Black silicon (BS), a nanostructured silicon surface containing highly roughened surface morphology, has recently emerged as a promising candidate for field emission (FE) cathodes in novel electron sources due to its huge number of sharp tips with ease of large-scale fabrication and controllable geometrical shapes. However, evaluating the FE performance of BS-based nanostructures with high accuracy is still a challenge due to the increasing complexity in the surface morphology. Here, we demonstrate a 3D modeling methodology to fully characterize highly disordered BS-based field emitters randomly distributed on a roughened nonflat surface. We fabricated BS cathode samples with different morphological features to demonstrate the validity of this method. We utilize parametrized scanning electron microscopy images that provide high-precision morphology details, successfully describing the electric field distribution in field emitters and linking the theoretical analysis with the measured FE property of the complex nanostructures with high precision. The 3D model developed here reveals a relationship between the field emission performance and the density of the cones, successfully reproducing the classical relationship between current density J and electric field E (J-E curve). The proposed modeling approach is expected to offer a powerful tool to accurately describe the field emission properties of large-scale, disordered nano cold cathodes, thus serving as a guide for the design and application of BS as a field electron emission material.



https://doi.org/10.1021/acsami.3c15402
Schaaf, Peter; Zyabkin, Dmitry
Mössbauer spectroscopy. - In: Encyclopedia of condensed matter physics, (2024), S. 15-28

The current chapter provides the reader with a general introduction of Mössbauer effect following by its unique utilization, which became known as Mössbauer spectroscopy. Mössbauer spectroscopy is based on the recoilless emission and following resonant absorption of gamma radiation by atomic nuclei and has been at the scientific forefront of physics, chemistry, biology, mineralogy for more than 60 years. Soon after the discovery of the Mössbauer effect, it became obvious that this effect can be used to study various properties of materials on a microscopic scale via hyperfine interactions with an unprecedented resolution. This was the beginning of a new analytical tool - Mössbauer spectroscopy. Today, it has developed into a standard analytical technique used in many laboratories and big research facilities. The current chapter provides the reader with a general introduction, explains the underlying hyperfine interactions and gives examples of the possible application of the method.



Liu, Fengli; Yan, Yong; Chen, Ge; Wang, Dong
Recent advances in ambient electrochemical methane conversion to oxygenates using metal oxide electrocatalysts. - In: Green chemistry, ISSN 1463-9270, Bd. 26 (2024), 2, S. 655-677

To reach a decarbonized future, the conversion of greenhouse gases into green fuels and valuable chemicals is of crucial importance. Methane emissions are the second most significant contributor to global warming. Recent advances in electrocatalytic partial oxidation of methane to high-value fuels at ambient temperatures promise to sidestep the requirement of high temperature in conventional thermal catalysis and provide a revolutionary, sustainable, and decentralized alternative to flaring. Electrocatalysts that can selectively produce valuable compounds from methane under mild conditions are essential for commercialization. This review covers current developments in the electrochemical partial oxidation of methane to oxygenates, with an emphasis on metal oxide electrocatalysts. The regularly deployed strategies, including doping and interface engineering, are systematically reviewed in detail. In addition, the design of the electrolytic cell, the electrolyte, time, potential, and temperature are examined thoroughly and discussed.



https://doi.org/10.1039/D3GC03513A
Li, Feitao; Tan, Xinu; Flock, Dominik; Oliva Ramírez, Manuel; Wang, Dong; Qiu, Risheng; Schaaf, Peter
Structure-dependent oxidation behavior of Au-Cu nanoparticles. - In: Journal of alloys and compounds, ISSN 1873-4669, Bd. 976 (2024), 173179, S. 1-8

Thermal oxidation is an easily controlled method to change the physical and chemical properties of nanoparticles, thus optimizing and expanding their applications. Unfortunately, less attention has been paid to the role of the crystal structure whose atomic arrangements can be critical for oxidation. Au-Cu nanoparticles showing a fast order-disorder transformation are oxidized at two temperatures of ordered (L10) and disordered (A1) phase regions. The oxidation rates between the two phases are compared by the Arrhenius equation, and a lower oxidation rate is determined in the L10 lattice than in the A1 lattice based on the time required for the complete oxidation. One possible reason is attributed to the longer diffusion length in the L10 lattice compared to the A1 lattice due to the anisotropic diffusion path of the former while isotropic diffusion of the latter, resulting in longer oxidation time and then slower oxidation for the ordered sample. The crystalline phase of Au-Cu nanoparticles can be straightforwardly tuned and the resulting atomic disposition is a powerful tool to control oxidation evolution.



https://doi.org/10.1016/j.jallcom.2023.173179
Grad, Marius; Honig, Hauke; Diemar, Andreas; Flock, Dominik; Spieß, Lothar
Complex material analysis of a TiC coating produced by hot pressing with optical light microscopy, EDS, XRD, GDOES and EBSD. - In: Surface and coatings technology, ISSN 1879-3347, Bd. 476 (2024), 130265, S. 1-11

The present study investigates the interface between carbon steel and titanium samples annealed at different temperatures (ϑ1 = Image 1 and ϑ2 = Image 2). In both cases, an observable layer forms at the interface, with its thickness increasing from tϑ1 = 2.75 ± Image 3 at Image 1 to tϑ2 = 8.86 ± Image 4 at Image 2. The layer's composition and thickness evolve with temperature. Analysis reveals approximately 40 at.-% carbon concentration in the exterior region, indicating likely titanium carbide creation. X-ray diffraction identifies titanium carbide peaks, while microscopy and elemental mapping confirm compositional gradients at the interface. Electron Backscatter Diffraction (EBSD) shows a gradient in grain size near the TiC surface, reflecting TiC nucleation rates. XRD data detect both titanium carbide and titanium phases, with TiC becoming more prominent at Image 2. Rietveld analysis further confirms TiC formation. Notably, distinct diffraction patterns on the contact and rear sides suggest a Ti(C, O, N) presence. Depth profiles exhibit varying surface and depth carbon concentrations, attributed to temperature effects. The study successfully demonstrates TiC coating fabrication through hot pressing, wherein Ti(C, O, N) coatings arise from titanium's affinity for reacting with oxygen and nitrogen. This research contributes to the understanding of phase transformations and interfacial properties in titanium-carbon steel systems.



https://doi.org/10.1016/j.surfcoat.2023.130265
Li, Zhiyong; Chen, Guangshen; Cheng, Pengfei; Zhang, Zhang; Liu, Junming
Phototactic photocatalysis enabled by functionalizing active microorganisms with photocatalyst. - In: Advanced sustainable systems, ISSN 2366-7486, Bd. 8 (2024), 2, 2300302, S. 1-10

Positive phototropism enables plants to take advantage of sunlight more efficiently. However, positive phototropism of plant-like photocatalyst has not been reported yet, which cause people's limited understanding on it. Therefore, developing new photocatalysts that can move toward the light source and thus speed up the photocatalytic process, is a great challenge. Herein, a biologically active photocatalyst (graphitic carbon nitride combined with algae microorganisms, g-C3N4/alga) is reported first that can behave like green plants and move toward light source, leading to a great enhancement in photocatalysis. The photocatalytic degradation efficiency of the phototactic g-C3N4/alga is improved up to 570% than that of pure g-C3N4. The phototactic g-C3N4/alga photocatalyst can effectively utilize the synergy of phototaxis of microalgae and photocatalytic activity of g-C3N4 to promote the pollutant decomposition using sunlight. Imparting photocatalyst with positive phototropism will open a new door in photocatalysis field for clean energy production, pollutant treatment, and biomass conversion.



https://doi.org/10.1002/adsu.202300302