Journal articles and book contributions

Anzahl der Treffer: 1453
Erstellt: Sun, 30 Jun 2024 14:10:22 +0200 in 0.1221 sec


Herrmann, Andreas; Assadi, Achraf Amir; Lachheb, Raoula; Zekri, Mohamed; Erlebach, Andreas; Damak, Kamel; Maâlej, Ramzi; Sierka, Marek; Rüssel, Christian
The effect of glass structure and local rare earth site symmetry on the optical properties of rare earth doped alkaline earth aluminosilicate glasses. - In: Acta materialia, ISSN 1873-2453, Bd. 249 (2023), 118811

Understanding the connection of molecular structure and optical properties of rare earth doped luminescent materials is essential for fabrication of state-of-the-art active laser media. On the other hand, rare earth ions can be used as a probe ion for the molecular structure of the host material if the structure-property correlations are known. Therefore, this work combines molecular dynamics simulations, Judd-Ofelt theory and UV-vis-NIR absorption spectroscopy including the behavior of the structure-sensitive hypersensitive absorption transitions of Er3+ to expand the knowledge on the local molecular structure in the immediate vicinity of the doped rare earth ions in dependence of glass composition. For this purpose, glasses of the compositions (35-x) BaO &hahog; x MgO &hahog; 10 Al2O3 &hahog; 55 SiO2 (mol%) (x = 0, 7.5, 15, 25, 35) and (20-x) BaO &hahog; x MgO &hahog; 20 Al2O3 &hahog; 60 SiO2 (mol%) (x = 0, 10, 20), doped with 2 × 10^20 ions/cm^3 Er3+ were prepared and analyzed. Clear differences in the absorption spectra between glasses of different BaO/MgO ratios, i.e. different network modifier field strengths, and different network modifier oxide to Al2O3 ratios are found and discussed in detail. Glasses with high BaO concentrations and high network modifier oxide to Al2O3 ratios provide lower rare earth coordination numbers with oxygen in general but higher coordination probabilities with non-bridging oxygen, which results in notably increased splitting of the optical transitions of the doped rare earth ions and higher hypersensitivity / lower local site symmetry for the doped rare earth ions in the investigated compositions. Based on our results and results from other publications the local rare earth site symmetry in glasses can in general be correlated with the rare earth coordination number.



https://doi.org/10.1016/j.actamat.2023.118811
Grunert, Malte; Bohm, Sebastian; Honig, Hauke; Wang, Dong; Lienau, Christoph; Runge, Erich; Schaaf, Peter
Structural and optical properties of gold nanosponges revealed via 3D nano-reconstruction and phase-field models. - In: Communications materials, ISSN 2662-4443, Bd. 4 (2023), 20, S. 1-13

Nanosponges are subject of intensive research due to their unique morphology, which leads among other effects to electrodynamic field localization generating a strongly nonlinear optical response at hot spots and thus enable a variety of applications. Accurate predictions of physical properties require detailed knowledge of the sponges’ chaotic nanometer-sized structure, posing a metrological challenge. A major goal is to obtain computer models with equivalent structural and optical properties. Here, to understand the sponges’ morphology, we present a procedure for their accurate 3D reconstruction using focused ion beam tomography. Additionally, we introduce a simulation method to create nanoporous sponge models with adjustable geometric properties. It is shown that if certain morphological parameters are similar for computer-generated and experimental sponges, their optical response, including magnitudes and hot spot locations, are also similar. Finally, we analyze the anisotropy of experimental sponges and present an easy-to-use method to reproduce arbitrary anisotropies in computer-generated sponges.



https://doi.org/10.1038/s43246-023-00346-7
Azizy, Raschid; Otto, Henning; König, Jörg; Schreier, David; Weigel, Christoph; Cierpka, Christian; Strehle, Steffen
A microfluidic magnetohydrodynamic pump based on a thermally bonded composite of glass and dry film photoresist. - In: Micro and nano engineering, ISSN 2590-0072, Bd. 18 (2023), 100173, S. 1-8

Miniaturized on-chip micropumps with no moving parts are intriguing components for advanced lab-on-chip systems. Magnetohydrodynamic pumping is one possibility but requires further research with respect to microsystems design and fabrication. In this paper, the design and fabrication of a magnetohydrodynamic micropump is discussed using a composite of patterned glass and stacked dry film photoresist as demonstrator platform. The magnetohydrodynamic pumping effect is achieved by the superposition of an electric ion current generated by integrated electrodes and an external magnetic field provided by a permanent magnet. As test electrolytes, potassium chloride with potassium hexacyanoferrate (III) and potassium hexacyane iron (II) were used. Seamless fluid channel sidewalls were achieved from stacked dry film resists, which appear to be cast from a single mold. A liquid-tight sealing of the microchannels was realized by covering them with a thermally bonded laser-structured glass lid. Although, a complete characterization of the pump performance was not yet realized, the micropump in its current state serves as a technology demonstrator for further research of microfluidic on-chip micropumps that utilize the magnetohydrodynamic effect and also for other microfluidic systems.



https://doi.org/10.1016/j.mne.2023.100173
Cheng, Pengfei; Wang, Dong
Easily repairable and high-performance carbon nanostructure absorber for solar photothermoelectric conversion and photothermal water evaporation. - In: ACS applied materials & interfaces, ISSN 1944-8252, Bd. 15 (2023), 6, S. 8761-8769

Carbon materials are a category of broadband solar energy harvesting materials that can convert solar energy into heat under irradiation, which can be used for photothermal water evaporation and photothermoelectric power generation. However, destruction of the carbon nanostructure during usage will significantly decrease the light-trapping performance and, thus, limit their practical applications. In this article, an easily repairable carbon nanostructure absorber with full-solar-spectrum absorption and a hierarchically porous structure is prepared. The carbon absorber shows a superhigh light absorption of above 97% across the whole solar spectrum because of multiple scatterings within the carbon nanostructure and photon interaction with the carbon nanoparticles. The excellent light absorption performance directly leads to a good photothermal effect. As a consequence, the carbon absorber integrated with a thermoelectric module can obtain a large power (133.3 μW cm-2) output under 1 sun. In addition, the carbon absorber combined with the sponge can achieve a high photothermal water evaporation efficiency of 83.6% under 1 sun. Its high-efficiency solar-to-electricity and photothermal water evaporation capabilities demonstrate that the carbon absorber with superhigh absorption, simple fabrication, and facile repairability shows great potential for practical fresh water production and electric power generation.



https://doi.org/10.1021/acsami.2c22077
Sauni Camposano, Yesenia Haydee; Bartsch, Heike; Matthes, Sebastian; Oliva Ramírez, Manuel; Jaekel, Konrad; Schaaf, Peter
Microstructural characterization and self-propagation properties of reactive Al/Ni multilayers deposited onto wavelike surface morphologies: influence on the propagation front velocity. - In: Physica status solidi, ISSN 1862-6319, Bd. 220 (2023), 7, 2200765, S. 1-10

Reactive multilayer systems are nanostructures of great interest for various technological applications because of their high energy release rate during the self-propagating reaction of their components. Therefore, many efforts are aimed at controlling the propagation velocity of these reactions. Herein, reactive multilayer systems of Al/Ni in the shape of free-standing foils with a wavelike surface morphology prepared by using sacrificial substrates with well-aligned waves are presented and the propagation of the reaction along different directions of the reproduced waves is analyzed. During the ignition test, the propagation front is recorded with a high-speed camera, and the maximum temperature is measured using a pyrometer. The propagation of the reaction is favored in the direction of the waves, which points out the influence of the anisotropy generated by this morphology and how it affects the propagation dynamics and the resulting microstructure. Furthermore, compared to their counterparts fabricated on flat substrates, these reactive multilayers with wavelike morphology exhibit a remarkable reduction in the propagation velocity of the reaction of about 50%, without significantly affecting the maximum temperature registered during the reaction.



https://doi.org/10.1002/pssa.202200765
Weigel, Christoph; Cherkasova, Valeriya; Holz, Mathias; Phi, Hai Binh; Görner Tenorio, Christian; Wilbertz, Björn; Voßgrag, Leonard; Fröhlich, Thomas; Strehle, Steffen
Ultralow expansion glass as material for advanced micromechanical systems. - In: Advanced engineering materials, ISSN 1527-2648, Bd. 25 (2023), 9, 2201873, S. 1-14

Ultralow expansion (ULE) glasses are of special interest for temperature stabilized systems for example in precision metrology. Nowadays, ULE materials are mainly used in macroscopic and less in micromechanical systems. Reasons for this are a lack of technologies for parallel fabricating high-quality released microstructures with a high accuracy. As a result, there is a high demand in transferring these materials into miniaturized application examples, realistic system modeling, and the investigation of microscopic material properties. Herein, a technological base for fabricating released micromechanical structures and systems with a structure height above 100 μm in ULE 7972 glass is established. Herein, the main fabrication parameters that are important for the system design and contribute thus to the introduction of titanium silicate as material for glass-based micromechanical systems are discussed. To study the mechanical properties in combination with respective simulation models, microcantilevers are used as basic mechanical elements to evaluate technological parameters and other impact factors. The implemented models allow to predict the micromechanical system properties with a deviation of only ±5% and can thus effectively support the micromechanical system design in an early stage of development.



https://doi.org/10.1002/adem.202201873
Wang, Honglei; Jiao, Yunfei; Wu, Bing; Wang, Dong; Hu, Yueqi; Liang, Fei; Shen, Chen; Knauer, Andrea; Ren, Dan; Wang, Hongguang; Aken, Peter Antonie van; Zhang, Hongbin; Sofer, Zdenek; Grätzel, Michael; Schaaf, Peter
Exfoliated 2D layered and nonlayered metal phosphorous trichalcogenides nanosheets as promising electrocatalysts for CO2 reduction. - In: Angewandte Chemie, ISSN 1521-3773, Bd. 62 (2023), 17, e202217253, S. 1-8

Two-dimensional (2D) materials catalysts provide an atomic-scale view on a fascinating arena for understanding the mechanism of electrocatalytic carbon dioxide reduction (CO2 ECR). Here, we successfully exfoliated both layered and nonlayered ultra-thin metal phosphorous trichalcogenides (MPCh3) nanosheets via wet grinding exfoliation (WGE), and systematically investigated the mechanism of MPCh3 as catalysts for CO2 ECR. Unlike the layered CoPS3 and NiPS3 nanosheets, the active Sn atoms tend to be exposed on the surfaces of nonlayered SnPS3 nanosheets. Correspondingly, the nonlayered SnPS3 nanosheets exhibit clearly improved catalytic activity, showing formic acid selectivity up to 31.6 % with -7.51 mA cm^-2 at -0.65 V vs. RHE. The enhanced catalytic performance can be attributed to the formation of HCOO* via the first proton-electron pair addition on the SnPS3 surface. These results provide a new avenue to understand the novel CO2 ECR mechanism of Sn-based and MPCh3-based catalysts.



https://doi.org/10.1002/anie.202217253
Kazak, Oleg; Halbedel, Bernd
Correlation of the vector gradient of a magnetic field with the kinetic energy of hard magnetic milling beads in electromechanical mills. - In: Chemie - Ingenieur - Technik, ISSN 1522-2640, Bd. 95 (2023), 10, S. 1615-1622

This paper describes the experimental investigation and numerical simulation of a novel electromechanical milling principle: the direct transformation of energy into the movement of milling beads with special magnetic properties. The experimental results show that this principle is ideally suited for the finest grinding of organic agents. Anthraquinone particles with a median size of 25.5 µm were electromechanically ground to 1 µm and the magnetic field strength in the process chamber has the greatest influence on milling results. The developed model reveals that the distribution of the time- and location-dependent vector gradient of the magnetic field in the process chamber determines the energy transfer from the exciter systems to the milling beads and hence the grinding results. With a suitable characterization of the vector gradient distribution, it is possible to establish a correlation between the vector gradient and specific milling beads power. This correlation is fundamental for the design of electromechanical milling machines.



https://doi.org/10.1002/cite.202200183
Maheu, Clément; Zare Pour, Mohammad Amin; Damestoy, Iban; Ostheimer, David; Mellin, Maximilian; Moritz, Dominik Christian; Paszuk, Agnieszka; Jaegermann, Wolfram; Mayer, Thomas; Hannappel, Thomas; Hofmann, Jan Philipp
Tapered cross section photoelectron spectroscopy provides insights into the buried interfaces of III-V semiconductor devices. - In: Advanced materials interfaces, ISSN 2196-7350, Bd. 10 (2023), 3, 2201648, S. 1-9

Interfaces are key elements that define electronic properties of the final device. Inevitably, most of the active interfaces of III-V semiconductor devices are buried and it is therefore not straightforward to characterize them. The Tapered Cross Section Photoelectron Spectroscopy (TCS-PES) approach is promising to address such a challenge. That the TCS-PES can be used to study the relevant heterojunction in epitaxial III-V architectures prepared by metalorganic chemical vapor deposition is demonstrated here. A MULTIPREP polishing system that enables controlling the angle between the sample holder and the polishing plate has been employed to improve the reproducibility of the polishing procedure. With this procedure, that preparing the TCS of III-V semiconductor devices with tapering angles lower than 0.02˚ is possible is demonstrated. The PES provides then information about the buried interfaces of Ge|GaInP and GaAs|GaInP layer stacks. Both, chemical and electronic properties have been measured by PES. It evidences that the preparation of the TCSs under an uncontrolled atmosphere modifies the pristine properties of the critical buried heterointerfaces. Surface states and reaction layers are created on the TCS surface, which restrict unambiguous conclusions on buried interface energetics.



https://doi.org/10.1002/admi.202201648
Herrmann, Andreas; Zekri, Mohamed; Maâlej, Ramzi; Rüssel, Christian
The effect of glass structure on the luminescence spectra of Sm3+-doped aluminosilicate glasses. - In: Materials, ISSN 1996-1944, Bd. 16 (2023), 2, 564, S. 1-12

Peralkaline Sm3+-doped aluminosilicate glasses with different network modifier ions (Mg2+, Ca2+, Sr2+, Ba2+, Zn2+) were investigated to clarify the effect of glass composition and glass structure on the optical properties of the doped Sm3+ ions. For this purpose, the Sm3+ luminescence emission spectra were correlated with the molecular structure of the glasses derived by molecular dynamics (MD) simulations. The different network modifier ions have a clear and systematic effect on the peak area ratio of the Sm3+ emission peaks which correlates with the average rare earth site symmetry in the glasses. The highest site symmetry is found for the calcium aluminosilicate glass. Glasses with network modifier ions of lower and higher ionic radii show a notably lower average site symmetry. The symmetry could be correlated to the rare earth coordination number with oxygen atoms derived by MD simulations. A coordination number of 6 seems to offer the highest average site symmetry. Higher rare earth coordination probabilities with non-bridging oxygen result in an increased splitting of the emission peaks and a notable broadening of the peaks. The zinc containing glass seems to play a special role. The Zn2+ ions notably modify the glass structure and especially the rare earth coordination in comparison to the other network modifier ions in the other investigated glasses. The knowledge on how glass structure affects the optical properties of doped rare earth ions can be used to tailor the rare earth absorption and emission spectra for specific applications.



https://doi.org/10.3390/ma16020564