Anzahl der Treffer: 834
Erstellt: Wed, 17 Jul 2024 23:05:03 +0200 in 0.0608 sec


Karcher, Christian; Kühndel, Jonas
Convective heat transfer in engine coolers influenced by electromagnetic fields. - In: Heat and mass transfer, ISSN 1432-1181, Bd. 54 (2018), 8, S. 2599-2605

In engine coolers of off-highway vehicles, convec- tive heat transfer at the coolant side limits both efficiency and performance density of the apparatus. Here, due to restrictions in construction and design, backwater areas and stagnation regions cannot be avoided. Those unwanted changes in flow characteristics are mainly triggered by flow deflections and sudden cross-sectional expansions. In application, mixtures of water and glysantine are used as appropriate coolants. Such coolants typically show an electrical conductivity of a few S/m. Coolant flow and convective heat transfer can then be controlled using Lorentz forces. These body forces are generated within the conducting fluid by the interactions of an electrical current density and a localized magnetic field, both of which are externally superimposed. In future applica- tion, this could be achieved by inserting electrodes in the cooler wall and a corresponding arrangement of permanent magnets. In this paper we perform numerical simulations of such magnetohydrodynamic flow in three model geometries that frequently appear in engine cooling applications: Carnot- Borda diffusor, 90˚ bend, and 180˚ bend. The simulations are carried out using the software package ANSYS Fluent. The present study demonstrates that, depending on the electromag- netic interaction parameter and the specific geometric arrange- ment of electrodes and magnetic field, Lorentz forces are suit- able to break up eddy waters and separation zones and thus significantly increase convective heat transfer in these areas. Furthermore, the results show that hydraulic pressure losses can be reduced due to the pumping action of the Lorentz forces.



https://doi.org/10.1007/s00231-017-2130-4
Massing, Julian; Kähler, Christian J.; Cierpka, Christian
Simultaneous volumetric temperature and velocity measurements in microfluidics using luminescent polymer particles. - In: ExHFT-9 2017, (2017), insges. 9 S.

Kästner, Christian; Moller, Sebastian; Resagk, Christian; Massing, Julian; Baczyzmalski, Dominik; Kähler, Christian J.; Schumacher, Jörg; Cierpka, Christian
Heat and mass transport in large aspect ratio Rayleigh-Bénard convection. - In: ExHFT-9 2017, (2017), insges. 8 S.

Moller, Sebastian; Resagk, Christian; Baczyzmalski, Dominik; Massing, Julian; Kähler, Christian J.; Cierpka, Christian
Simultaneous measurement of the velocity and temperature field in Rayleigh-Benard convection at high aspect ratios :
Simultane Temperatur- und Geschwindigkeitsfeldmessungen in Rayleigh-Bénard Konvektion bei großen Aspektverhältnissen. - In: Experimentelle Strömungsmechanik, ISBN 978-3-9816764-3-3, (2017), Seite 52-1-52-8

Massing, Julian; Kähler, Christian J.; Cierpka, Christian
Simultane Bestimmung des Temperatur- und Strömungsfeldes basierend auf der Phosphoreszenzlebensdauer von EuTTa. - In: Experimentelle Strömungsmechanik, ISBN 978-3-9816764-3-3, (2017), Seite 51-1-51-10

Rösing, Wiebke; König, Jörg; Otto, Henning; Cierpka, Christian
Development and characterization of microfluidic membraneless fuel cell :
Entwicklung und Charakterisierung einer mikrofluidischen membranlosen Brennstoffzelle. - In: Experimentelle Strömungsmechanik, ISBN 978-3-9816764-3-3, (2017), Seite 15-1-15-6

Wiederhold, Andreas; Resagk, Christian
Influence of a second gaseous phase on Lorentz force velocimetry at low conducting fluids :
Einfluss einer zweiten gasförmigen Phase auf die Lorentzkraft-Anemometrie bei schwach leitfähigen Fluiden. - In: Experimentelle Strömungsmechanik, ISBN 978-3-9816764-3-3, (2017), Seite 30-1-30-6

Lyu, Ze; Karcher, Christian; Thess, André
Lorentz force velocimetry applied to liquid metal two-phase flow. - In: Proceedings of the VIII International Scientific Colloquium Modelling for Materials Processing, (2017), S. 295-299

Karcher, Christian; Hernández, Daniel
Dynamics of falling liquid metal droplets and jets influenced by a strong axial magnetic field. - In: Proceedings of the VIII International Scientific Colloquium Modelling for Materials Processing, (2017), S. 283-88

Karcher, Christian; Hernández, Daniel
Dynamics of falling liquid metal droplets and jets affected by a strong magnetic field. - In: Magnetohydrodynamics, ISSN 0024-998X, Bd. 53 (2017), 4, S. 739-745

Non-contact electromagnetic shaping of liquid metal free surfaces is crucial in several metallurgic processes including bending or stabilization of jets in casting or fusion applications. In this context, we experimentally study the influence of strong axial magnetic fields up to 5 T on the dynamics of falling droplets and jets. As a test melt, we use GaInSn which is liquid at room temperature. In the experiments, we vary the magnetic flux density, the tilt angle, the liquid metal flowrate, and the diameter and material (conducting/non-conducting) of the nozzle. As major results, we find that under the influence of the field, liquid metal droplets are stretched in the field direction, the droplet rotation ceases, and the droplet axis aligns with the axis of the field. Moreover, we observe that the jet break-up into droplets is suppressed and, for the case of conducting nozzle and tilt, jets are bent towards the field axis.