Zeitschriftenaufsätze ab 2018

Anzahl der Treffer: 1679
Erstellt: Sun, 30 Jun 2024 22:28:27 +0200 in 0.0682 sec


Peipmann, Ralf; Bund, Andreas; Schmidt, Udo
Simulation verschiedener Hull-Zellen-Geometrien, Teil 1 - spezielle Elektrodengeometrien in 2D und 3D. - In: Galvanotechnik, ISSN 0016-4232, Bd. 112 (2021), 10, S. 1315-1323

Grundhöfer, Lars; Rizzi, Filippo Giacomo; Gewies, Stefan; Hoppe, Michael; Bäckstedt, Jesper; Dziewicki, Marek; Del Galdo, Giovanni
Positioning with medium frequency R-Mode. - In: Navigation, ISSN 2161-4296, Bd. 68 (2021), 4, S. 829-841

R-Mode is a terrestrial navigation system under development for the maritime domain that provides backup in case of a GNSS outage. This paper describes the first test results for real-time positioning on board a ship using medium frequency R-Mode signals. The estimation and positioning algorithms used are described in detail and it is shown how they are integrated into the R-Mode receiver developed by the German Aerospace Center. Moreover, during two daytime experiments with lower and higher dynamic movements of a ship in the Baltic Sea, we were able to achieve a 95% horizontal positioning accuracy of better then 12 m in the center of three R-Mode transmitters. This demonstrates the first time that the medium frequency R-Mode has provided positioning at sea.



https://doi.org/10.1002/navi.450
Sarcev, Branislava Petronijevic; Labus Zlatanovic, Danka; Hadnadjev, Miroslav; Pilic, Branka; Sarcev, Ivan; Markovic, Dubravka; Balos, Sebastian
Mechanical and rheological properties of flowable resin composites modified with low addition of hydrophilic and hydrophobic TiO2 nanoparticles. - In: Materiale plastice, ISSN 2537-5741, Bd. 58 (2021), 2, S. 80-90

The aim of this work was to find the influence of the addition of low amount of hydrophilic and hydrophobic TiO2 nanoparticles on compressive strength, microhardness and rheological properties of flowable dental composite material. Specimens were prepared by adding 0.05; 0.2 and 1 wt. % of hydrophilic and hydrophobic 20 nm TiO2 nanoparticles. These specimens were compared to non-modified control specimens in compressive strength and microhardness. Furthermore, their rheological properties were determined. The optimal nanoparticle loading was 0.2 % hydrophobic TiO2, resulting in significantly higher compressive strength and microhardness than those of the control specimen group. Mechanical properties of flowable composites reinforced with hydrophilic and hydrophobic TiO2 at higher loadings are lower than those of control specimens, which is the result of nanoparticle agglomeration. TiO2 nanoparticles addition resulted in the decrease in viscosity in all specimens except for the specimewn with 1% hydrophilic TiO2 nanoparticles. In accordance to the obtained results, hydrophobic nanoparticle addition results in a more resistant and durable material, combined with an increased flowability compared to a non-modified composite.



https://doi.org/10.37358/MP.21.2.5480
Fröhlich, Thomas; Sindram, Johannes; Haueisen, Jens; Hunold, Alexander
Kraftmessung von Elektroden an einem menschlichen Kopfmodell :
Force measurement of electrodes on a human head model. - In: Technisches Messen, ISSN 2196-7113, Bd. 88 (2021), 11, S. 724-730

Electroencephalography (EEG) and transcranial electric stimulation (TES) require caps for holding the respective electrodes in place. To support the optimal design of such caps, knowledge of the force-displacement curves for each electrode position is desirable. We propose a calibrated setup to traceably measure force-displacement curves which consists of a human head model, a force sensor, a linear guide, a stepper motor, and a multiplexing multimeter. Repeated measures of a textile EEG-cap and a TES-cap show significant non-linearity and hysteresis effects for the force-displacement curves. Our setup will allow for the assessment of the fit of EEG and TES-caps for various head shapes and sizes.



https://doi.org/10.1515/teme-2021-0082
Al Kury, Lina T.; Papandreou, Dimitrios; Hurmach, Vasyl V.; Dryn, Dariia O.; Melnyk, Mariia I.; Platonov, Maxim O.; Prylutskyy, Yuriy I.; Ritter, Uwe; Scharff, Peter; Zholos, Alexander V.
Single-walled carbon nanotubes inhibit TRPC4-mediated muscarinic cation current in mouse ileal myocytes. - In: Nanomaterials, ISSN 2079-4991, Bd. 11 (2021), 12, 3410, S. 1-15

Single-walled carbon nanotubes (SWCNTs) are characterized by a combination of rather unique physical and chemical properties, which makes them interesting biocompatible nanostructured materials for various applications, including in the biomedical field. SWCNTs are not inert carriers of drug molecules, as they may interact with various biological macromolecules, including ion channels. To investigate the mechanisms of the inhibitory effects of SWCNTs on the muscarinic receptor cation current (mICAT), induced by intracellular GTPys (200 [my]M), in isolated mouse ileal myocytes, we have used the patch-clamp method in the whole-cell configuration. Here, we use molecular docking/molecular dynamics simulations and direct patch-clamp recordings of whole-cell currents to show that SWCNTs, purified and functionalized by carboxylation in water suspension containing single SWCNTs with a diameter of 0.5-1.5 nm, can inhibit mICAT, which is mainly carried by TRPC4 cation channels in ileal smooth muscle cells, and is the main regulator of cholinergic excitation-contraction coupling in the small intestinal tract. This inhibition was voltage-independent and associated with a shortening of the mean open time of the channel. These results suggest that SWCNTs cause a direct blockage of the TRPC4 channel and may represent a novel class of TRPC4 modulators.



https://doi.org/10.3390/nano11123410
Schramm, Stefan; Dietzel, Alexander; Link, Dietmar; Blum, Maren-Christina; Klee, Sascha
3D retinal imaging and measurement using light field technology. - In: Journal of biomedical optics, ISSN 1560-2281, Bd. 26 (2021), 12, S. 126002-1-126002-19

Significance: Light-field fundus photography has the potential to be a new milestone in ophthalmology. Up-to-date publications show only unsatisfactory image quality, preventing the use of depth measurements. We show that good image quality and, consequently, reliable depth measurements are possible, and we investigate the current challenges of this novel technology. Aim: We investigated whether light field (LF) imaging of the retina provides depth information, on which structures the depth is estimated, which illumination wavelength should be used, whether deeper layers are measurable, and what kinds of artifacts occur. Approach: The technical setup, a mydriatic fundus camera with an LF imager, and depth estimation were validated by an eye model and in vivo measurements of three healthy subjects and three subjects with suspected glaucoma. Comparisons between subjects and the corresponding optical coherence tomography (OCT) measurements were used for verification of the depth estimation. Results: This LF setup allowed for three-dimensional one-shot imaging and depth estimation of the optic disc with green light. In addition, a linear relationship was found between the depth estimates of the OCT and those of the setup developed here. This result is supported by the eye model study. Deeper layers were not measurable. Conclusions: If image artifacts can be handled, LF technology has the potential to help diagnose and monitor glaucoma risk at an early stage through a rapid, cost-effective one-shot technology.



https://doi.org/10.1117/1.JBO.26.12.126002
Stolle, Heike Lisa Kerstin Stephanie; Kluitmann, Jonas; Csáki, Andrea; Köhler, Michael; Fritzsche, Wolfgang
Shape-dependent catalytic activity of gold and bimetallic nanoparticles in the reduction of methylene blue by sodium borohydride. - In: Catalysts, ISSN 2073-4344, Bd. 11 (2021), 12, 1442, S. 1-20

In this study the catalytic activity of different gold and bimetallic nanoparticle solutions towards the reduction of methylene blue by sodium borohydride as a model reaction is investigated. By utilizing differently shaped gold nanoparticles, i.e., spheres, cubes, prisms and rods as well as bimetallic gold–palladium and gold-platinum core-shell nanorods, we evaluate the effect of the catalyst surface area as available gold surface area, the shape of the nanoparticles and the impact of added secondary metals in case of bimetallic nanorods. We track the reaction by UV/Vis measurements in the range of 190-850 nm every 60 s. It is assumed that the gold nanoparticles do not only act as a unit transferring electrons from sodium borohydride towards methylene blue but can promote the electron transfer upon plasmonic excitation. By testing different particle shapes, we could indeed demonstrate an effect of the particle shape by excluding the impact of surface area and/or surface ligands. All nanoparticle solutions showed a higher methylene blue turnover than their reference, whereby gold nanoprisms exhibited 100% turnover as no further methylene blue absorption peak was detected. The reaction rate constant k was also determined and revealed overall quicker reactions when gold or bimetallic nanoparticles were added as a catalyst, and again these were highest for nanoprisms. Furthermore, when comparing gold and bimetallic nanorods, it could be shown that through the addition of the catalytically active second metal platinum or palladium, the dye turnover was accelerated and degradation rate constants were higher compared to those of pure gold nanorods. The results explore the catalytic activity of nanoparticles, and assist in exploring further catalytic applications.



https://doi.org/10.3390/catal11121442
Tchouaha Tankoua, Aristide; Köhler, Tobias; Bergmann, Jean Pierre; Grätzel, Michael; Betz, Philip; Lindenau, Dirk
Tool downscaling effects on the friction stir spot welding process and properties of current-carrying welded aluminum-copper joints for E-Mobility applications. - In: Metals, ISSN 2075-4701, Bd. 11 (2021), 12, 1949, S. 1-20

According to the technical breakthrough towards E-Mobility, current-carrying dissimilar joints between aluminum and copper are gaining an increasing relevance for the automotive industry and thus, coming into focus of many research activities. The joining of dissimilar material in general is well known to be a challenging task. Furthermore, the current-carrying joining components in E-Drive consist of pure aluminum and copper materials with relatively thin sheet thickness, which are thermally and mechanically very sensitive, as well as highly heat and electrically conductive. This results in additional challenges for the joining process. Due to their properties, friction stir welding and especially fiction stir spot welding (FSSW) using pinless tools - i.e., as hybrid friction diffusion bonding process (HFDB) is more and more attractive for new application fields and particularly promising for aluminum-copper joining tasks in E-Mobility. However, the feasibility is restricted because of the relatively high process forces required during friction stir welding. Thus, to fulfill the high process and quality requirements in this above-mentioned application field, further research and process development towards process force reduction are necessary. This work deals with the application of the tool downscaling strategy as a mean of process force reduction in FSSW of thin aluminum and copper sheets for current-carrying applications in E-Mobility, where the components are very sensitive to high mechanical loads. The tool downscaling approach enables constant weld quality in similar process time of about 0.5 s despite reduced process forces and torques. By reducing the tool diameter from 10 mm to 6 mm, the process force could be reduced by 36% and the torque by over 50%. Furthermore, a similar heat propagation behavior in the component is observable. These results provide a good basis for the joining of E-Drive components with thermal and mechanical sensitive sheet materials using the pinless FSSW process.



https://doi.org/10.3390/met11121949
Zeußel, Lisa; Aziz, Carlos; Schober, Andreas; Singh, Sukhdeep
pH-dependent selective colorimetric detection of proline and hydroxyproline with Meldrum's acid-furfural conjugate. - In: Chemosensors, ISSN 2227-9040, Bd. 9 (2021), 12, 343, S. 1-13

Activated 2-furfural gives intense color formation when reacted with amines, due to a ring opening reaction cascade that furnishes a conjugated molecular system. Unique colorimetric characteristic of this reaction makes it an interesting candidate for developing chemosensors operating in visible range. Among many activated 2-furfural derivatives, Meldrum's acid furfural conjugate (MAFC) recently gained significant interest as colorimetric chemosensor. MAFC has been explored as selective chemosensor for detecting amines in solution, secondary amines on polymer surfaces and even nitrogen rich amino acids (AA) in aqueous solution. In this work, the pH dependency of MAFC-AA reaction is explored. It was found that proline gives an exceptionally fast colored reaction at pH 11, whereas at other pHs, no naked eye color product formation was observed. The reaction sequence including ring opening reaction upon nucleophilic addition of cyclic amine of proline resulting in a conjugated triene was confirmed by NMR titrations. The highly pH dependent reaction can e.g., potentially be used to detect proline presence in biological samples. An even more intense color formation takes place in the reaction of natural proline derivative 4-hydroxyproline. The detection limit of proline and 4-hydroxyproline with MAFC solution was found to be 11 [my]M and 6 [my)M respectively.



https://doi.org/10.3390/chemosensors9120343
Wang, Qi; Cheng, Xing; Sun, Yukun; Sun, Zaicheng; Wang, Dong; Chen, Ge; Schaaf, Peter
A synergetic effect between photogenerated carriers and photothermally enhanced electrochemical urea-assisted hydrogen generation on the Ni-NiO/nickel foam catalyst. - In: Materials advances, ISSN 2633-5409, Bd. 2 (2021), 6, S. 2104-2111

The urea-assisted water electrolysis reactions are of great significance for solving the increasingly serious energy crisis and environmental pollution. Recently, the photo-driven effect strategy has been demonstrated to be an efficient external driving force for improving electrocatalytic activities. Herein, we synthesized Ni-NiO heterostructured nanosheet arrays grown on Ni foam (denoted as Ni-NiO/NF) as a bifunctional electrocatalyst enhancing the urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) activities simultaneously under light irradiation. Moreover, when the catalyst is used in a two-electrode system for the urea-assisted water electrolysis reaction, the cell potential could be reduced to 1.48 V to achieve the current density of 10 mA cm-2 after exposure to light irradiation, as well as remarkable stability. Our studies demonstrate that the enhancement of the HER & UOR activities is attributed to a synergetic effect between photogenerated carriers and photothermy.



https://doi.org/10.1039/D1MA00038A