Zeitschriftenaufsätze ab 2018

Anzahl der Treffer: 1679
Erstellt: Sun, 30 Jun 2024 22:28:27 +0200 in 0.0908 sec


Zhou, Xue-Quan; Mytiliniou, Maria; Hilgendorf, Jonathan; Zeng, Ye; Papadopoulou, Panagiota; Shao, Yang; Dominguez, Maximilian Paradiz; Zhang, Liyan; Hesselberth, Marcel B. S.; Bos, Erik; Siegler, Maxime A.; Buda, Francesco; Brouwer, Albert M.; Kros, Alexander; Koning, Roman I.; Heinrich, Doris; Bonnet, Sylvestre
Intracellular dynamic assembly of deep-red emitting supramolecular nanostructures based on the Pt…Pt metallophilic interaction. - In: Advanced materials, ISSN 1521-4095, Bd. 33 (2021), 37, 2008613, insges. 13 S.

https://doi.org/10.1002/adma.202008613
Hunold, Alexander; Haueisen, Jens; Freitag, Christine M.; Siniatchkin, Mikhail; Moliadze, Vera
Cortical current density magnitudes during transcranial direct current stimulation correlate with skull thickness in children, adolescent and young adults. - In: Non-invasive brain stimulation (NIBS) in neurodevelopmental disorders, (2021), S. 41-56

Transcranial direct current stimulation protocols are often applied with a fixed parameter set to all subjects participating in an interventional study. This might lead to considerable effect variation in inhomogeneous subject groups or when transferring stimulation protocols to different age groups. The aim of this study was to evaluate magnitude differences of the electric current density distribution on the gray matter surface in children, adolescent and adults in correlation with the individual volume conductor geometry. We generated individual six compartment finite element models from structural magnetic resonance images of four children (age: 10.95 a±1.32 a), eight adolescents (age: 15.10 a±1.16 a) and eight young adults (age: 21.62 a±2.45 a). We determined the skull thickness in the models as Euclidean distance between the surface of the cerebrospinal fluid compartment and outer skull boundary. For tDCS simulations, we modeled 5×7cm patch electrodes impressing 1mA current intensity as anode and cathode over the left M1 and the right fronto-polar orbit, respectively. The resulting current density was analyzed on the gray matter surface. Our results demonstrate higher cortical current density magnitudes in children compared to adults for a given tDCS current strength. Above the evaluated cortex, the skull thickness increased with age. In conclusion, we underline the importance of age-dependent and individual models in tDCS simulations.



Mehler, Alexander; Néel, Nicolas; Voloshina, Elena; Dedkov, Yuriy; Kröger, Jörg
Second floor of flatland: epitaxial growth of graphene on hexagonal boron nitride. - In: Small, ISSN 1613-6829, Bd. 17 (2021), 36, 2102747, insges. 9 S.

In the studies presented here, the subsequent growth of graphene on hexagonal boron nitride (h-BN) is achieved by the thermal decomposition of molecular precursors and the catalytic assistance of metal substrates. The epitaxial growth of h-BN on Pt(111) is followed by the deposition of a temporary Pt film that acts as a catalyst for the fabrication of the graphene sheet. After intercalation of the intermediate Pt film underneath the boron-nitride mesh, graphene resides on top of h-BN. Scanning tunneling microscopy and density functional calculations reveal that the moiré pattern of the van-der-Waals-coupled double layer is due to the interface of h-BN and Pt(111). While on Pt(111) the graphene honeycomb unit cells uniformly appear as depressions using a clean metal tip for imaging, on h-BN they are arranged in a honeycomb lattice where six protruding unit cells enframe a topographically dark cell. This superstructure is most clearly observed at small probe-surface distances. Spatially resolved inelastic electron tunneling spectroscopy enables the detection of a previously predicted acoustic hybrid phonon of the stacked materials. Its' spectroscopic signature is visible in surface regions where the single graphene sheet on Pt(111) transitions into the top layer of the stacking.



https://doi.org/10.1002/smll.202102747
Reimann, Timmy; Barth, Stefan; Capraro, Beate; Bartsch, Heike; Töpfer, Jörg
Cofiring of LTCC multilayer assemblies with integrated NTC thermistor temperature sensor layers. - In: Ceramics international, ISSN 1873-3956, Bd. 47 (2021), 19, S. 27849-27853

We have studied the integration of Ni-Co-Zn-Mn spinel NTC thermistor layers into LTCC multilayer modules. Sintering of the cubic spinel Ni0.5Co0.5Zn0.75Mn1.25O4 with addition of 3 wt% Bi2O3 additive at 900 ˚C resulted in samples with 96% density and with good electrical performance. Thermistor spinel tapes, fabricated using doctor blade tape casting, were stacked with layers of a commercially available low-k dielectric LTCC tape, and cofired at 900 ˚C. Free or constrained cofiring did not give crack-free multilayer samples. Thermistor layers were then integrated combining the commercial LTCC tape with a Zn titanate-based tape in one multilayer laminate, and error-free multilayer samples with a room-temperature resistivity of p298 = (2,9 ± 0.08) k[Ohm]cm and a thermistor constant of B = (4280 ± 200) K were obtained. This demonstrates the possibility of cofiring of functional ceramic and low-k LTCC tapes and shows the potential of NTC spinel thermistor layers as temperature sensors integrated in complex LTCC multilayer architectures.



https://doi.org/10.1016/j.ceramint.2021.06.213
Ortlepp, Ingo; Stauffenberg, Jaqueline; Manske, Eberhard
Processing and analysis of long-range scans with an atomic force microscope (AFM) in combination with nanopositioning and nanomeasuring technology for defect detection and quality control. - In: Sensors, ISSN 1424-8220, Bd. 21 (2021), 17, 5862, insges. 17 S.

This paper deals with a planar nanopositioning and -measuring machine, the so-called nanofabrication machine (NFM-100), in combination with a mounted atomic force microscope (AFM). This planar machine has a circular moving range of 100 mm. Due to the possibility of detecting structures in the nanometre range with an atomic force microscope and the large range of motion of the NFM-100, structures can be analysed with high resolution and precision over large areas by combining the two systems, which was not possible before. On the basis of a grating sample, line scans over lengths in the millimetre range are demonstrated on the one hand; on the other hand, the accuracy as well as various evaluation methods are discussed and analysed.



https://doi.org/10.3390/s21175862
Cretu, Andrea; Mattea, Carlos; Stapf, Siegfried
Low-field and variable-field NMR relaxation studies of H2O and D2O molecular dynamics in articular cartilage. - In: PLOS ONE, ISSN 1932-6203, Bd. 16 (2021), 8, e0256177, insges. 34 S.
Im Titel ist "2" tiefgestellt

https://doi.org/10.1371/journal.pone.0256177
Supreeti, Shraddha; Schienbein, Ralf; Feßer, Patrick; Fern, Florian; Hoffmann, Martin; Sinzinger, Stefan
Development and implementation of a rotating nanoimprint lithography tool for orthogonal imprinting on edges of curved surfaces. - In: Nanomanufacturing and metrology, ISSN 2520-8128, Bd. 4 (2021), 3, S. 175-180

Uniform molding and demolding of structures on highly curved surfaces through conformal contact is a crucial yet often-overlooked aspect of nanoimprint lithography (NIL). This study describes the development of a NIL tool and its integration into a nanopositioning and nanomeasuring machine to achieve high-precision orthogonal molding and demolding for soft ultraviolet-assisted NIL (soft UV-NIL). The process was implemented primarily on the edges of highly curved plano-convex substrates to demonstrate structure uniformity on the edges. High-resolution nanostructures of sub-200-nm lateral dimension and microstructures in the range of tens of microns were imprinted. However, the nanostructures on the edges of the large, curved substrates were difficult to characterize precisely. Therefore, microstructures were used to measure the structure fidelity and were characterized using profilometry, white light interferometry, and confocal laser scanning microscopy. Regardless of the restricted imaging capabilities at high inclinations for high-resolution nanostructures, the scanning electron microscope (SEM) imaging of the structures on top of the lens substrate and at an inclination of 45˚ was performed. The micro and nanostructures were successfully imprinted on the edges of the plano-convex lens at angles of 45˚, 60˚,and 90˚ from the center of rotation of the rotating NIL tool. The method enables precise imprinting at high inclinations, thereby presenting a different approach to soft UV-NIL on curved surfaces.



https://doi.org/10.1007/s41871-021-00114-6
Zhang, Keyu; Cui, Dingfang; Huang, Xiaopeng; Liang, Feng; Gao, Geng; Song, Tingyu; Zhang, Libo; Yao, Yaochun; Lei, Yong
Insights into the interfacial chemistry and conversion mechanism of iron oxalate toward the reduction by lithium. - In: The chemical engineering journal, ISSN 1873-3212, Bd. 426 (2021), 131446

The origin of excellent lithium storage ability and high irreversible capacity is probably the least understood component for transition-metal oxalates as anode materials in lithium-ion batteries. Considerable efforts have been put into understanding their electrochemical reaction mechanisms, but these insights have mostly been unilateral and unsystematic. Herein, the interface characteristic between iron oxalate anode and electrolyte and detailed conversion process were investigated to explore the source of irreversible Li+ storage. In particular, a gelatinous "organic" layer identified oxygen, fluorine and phosphorus as the main chemical elements can be re-oxidized and exhibits an obviously reversible conversion between sedimentation and decomposition during its initial lithiation process, despite the general belief that it shows similar electrochemically inert to solid-electrolyte interphase (SEI). Meanwhile, this special interface layer leads to higher ability of Li+ ions diffusion and smaller charge-transfer resistance, which is the vital role for excellent rate capability. Furthermore, ex situ FTIR analysis confirms the formation and residue of new intermediate compound of Li2Fe(C2O4)2, thus making a part of initial irreversible capacity. It is also found that the iron oxalate electrode with larger capacitive contribution still has more widely application in energy storage of supercapacitors in future.



https://doi.org/10.1016/j.cej.2021.131446
Zeußel, Lisa; Mai, Patrick; Sharma, Sanjay; Schober, Andreas; Ren, Shizhan; Singh, Sukhdeep
Colorimetric method for instant detection of lysine and arginine using novel Meldrum's acid-furfural conjugate. - In: ChemistrySelect, ISSN 2365-6549, Bd. 6 (2021), 27, S. 6834-6840

In the past few years Meldrum's acid furfural conjugate (MAFC) have been extensively explored as starting material for the synthesis of photo switchable donor acceptor stenhouse adducts (DASA). Hereby, we have explored the interaction of MAFC with various amino acids. To our surprise, nitrogen rich amino acids like lysine and arginine interact spontaneously with MAFC to give colored adduct immediately, whereas other amino acids, including nitrogen rich histidine, didn't show any coloration. Naked eye detection of lysine in benign solvent make this reagent an attractive new entry to the collection of chemosensors for the colorimetric detection of lysine and arginine. Intense coloration corresponds to the absorption at 514 nm under UV-Vis spectrometer. Lowest concentration of 100 m can be detected with UV-Vis spectrometer. NMR titrations reveals that the appearance of color is due to ring opening of a furfural that leads to the formation of conjugated triene species. Compared to previously reported chemosensors for lysine and arginine, MAFC offers advantages including simple synthesis, easy handling, high speed, low cost, good sensitivity/selectivity.



https://doi.org/10.1002/slct.202101140
Wu, Xiaocui; Wiame, Frédéric; Maurice, Vincent; Marcus, Philippe
Molecular scale insights into interaction mechanisms between organic inhibitor film and copper. - In: npj Materials degradation, ISSN 2397-2106, Bd. 5 (2021), 22, insges. 8 S.

A model experimental approach, providing molecular scale insight into the build up mechanisms of a corrosion inhibiting interface, is reported. 2-mercaptobenzimidazole (2-MBI), a widely used organic inhibitor, was deposited from the vapor phase at ultra-low pressure on copper surfaces in chemically-controlled state, and X-ray photoelectron spectroscopy was used in situ to characterize the adsorption mechanisms upon formation of the inhibiting film. On copper surfaces prepared clean in the metallic state, the intact molecules lie flat at low exposure, with sulfur and both nitrogen atoms bonded to copper. A fraction of the molecules decomposes upon adsorption, leaving atomic sulfur on copper. At higher exposure, the molecules adsorb in a tilted position with sulfur and only one nitrogen bonded to copper, leading to a densification of 2-MBI in the monolayer. A bilayer is formed at saturation with the outer layer not bonded directly to copper. In the presence of a pre-adsorbed 2D oxide, oxygen is substituted and the molecules adsorb intactly without decomposition. A 3D oxide prevents the bonding of sulfur to copper. The molecular film formed on metallic and 2D oxide pre-covered surfaces partially desorbs and decomposes at temperature above 400 ˚C, leading to the adsorption of atomic sulfur on copper.



https://doi.org/10.1038/s41529-021-00168-3