Publikationen am Institut für Chemie und Biotechnik

Anzahl der Treffer: 883
Erstellt: Sun, 30 Jun 2024 18:00:25 +0200 in 0.1364 sec


Horak, Iryna; Skaterna, Tetiana; Lugovskyi, Serhii; Krysiuk, Iryna; Tykhomyrov, Artem; Prylutska, Svitlana; Tverdokhleb, Nina; Senenko, Anton; Cherepanov, Vsevolod; Drobot, Liudmyla; Matyshevska, Olga; Ritter, Uwe; Prylutskyy, Yuriy
Antimetastatic lung cancer therapy using alkaloid Piperlongumine noncovalently bound to С60 fullerene. - In: Journal of drug delivery science and technology, Bd. 92 (2024), 105275, S. 1-10

A novel nanoformulation, C60 fullerene loaded with a plant alkaloid Piperlongumine (PL) molecules (C60-PL nanocomplex), as a potential drug for the treatment of highly metastatic lung cancer was created and characterized by using ultrasonic technology, computer simulation, atomic force and scanning tunneling microscopy. The aim of the study was to evaluate the antimetastatic potential of PL alone and the C60-PL nanocomplex using Lewis lung carcinoma (LLC) cell line as a model. Evidence has been obtained that the 2:1C60-PL nanocomplex is a potent agent capable of effectively reducing the survival, migration and invasion of LLC cells in vitro, as well as tumor growth and metastasis in vivo compared to free PL. These effects in cell behavior were shown to be associated with an increased Bax expression and high level of cleaved PARP confirming the proapototic potential of C60-PL nanocomplex as well as down-regulation of the mRNA of epithelial-mesenchymal transition regulator Twist1 and cancer stem cell marker CD44, a reduced level of phosphorylated mTOR and adaptor protein Ruk/CIN85. Histological analysis of the lung tissue of LLC-bearing mice showed that in animals that received the C60-PL nanocomplex, the regression of metastases prevailed over their growth. The obtained results allow to conclude that the proposed C60-PL nanocomplex represents a promising drug for the treatment of metastatic lung cancer.



https://doi.org/10.1016/j.jddst.2023.105275
Huang, Tianbai; Kupfer, Stephan; Geitner, Robert; Gräfe, Stefanie
Computational modelling and mechanistic insight into light-driven CO dissociation of square-planar rhodium(I) complexes. - In: ChemPhotoChem, ISSN 2367-0932, Bd. 8 (2024), 5, e202300219, S. 1-13

The activation step of Vaska-type Rh(I) complexes, such as the photocleavage of the Rh‑CO bond, plays an important role in the subsequent C-H activation. To elucidate the details of the photochemistry of Vaska-type Rh(I) complexes, such as trans-Rh(PMe3)2(CO)(Cl), we here present a computationally derived picture as obtained at the density functional level of theory (DFT) in combination with multireference wavefunction-based methods. We have identified that the photocleavage of CO proceeds via the metal-centered excited state, which is populated through intersystem crossing (ISC) from the dipole-allowed excited state S1. Moreover, the present study unraveled the reasons for the low C-H activation efficiency when using Rh featuring the bidentate ligand 1,2-bis(dimethylphosphino)ethane (dmpe), namely due to its unfavorable photochemical properties, i.e., the small driving force for light-induced CO loss and the fast deactivation of 3MC state back to the singlet ground state. In this study, we provide theoretical insight into mechanistic details underlying the light-induced CO dissociation process, for Rh complexes featuring PMe3 and dmpe ligands.



https://doi.org/10.1002/cptc.202300219
Grebinyk, Anna; Prylutska, Svitlana; Grebinyk, Sergii; Prylutskyy, Yuriy; Ritter, Uwe; Matyshevska, Olga; Dandekar, Thomas; Frohme, Marcus
Toward photodynamic cancer chemotherapy with C60-Doxorubicin nanocomplexes. - In: Nanomaterials for photodynamics therapy, (2023), S. 489-522

Recent progress in nanotechnology has attracted interest to a biomedical application of the carbon nanoparticle C60 fullerene (C60) due to its unique structure and versatile biological activity. The dual functionality of C60 as a photosensitizer and a drug nanocarrier sets an opportunity to improve the efficiency of chemotherapeutic drugs for cancer cells. Pristine C60 demonstrates time-dependent accumulation with predominant mitochondrial localization in cancer cells. Nanomolar amounts of C60-drug nanocomplexes in 1:1 and 2:1 molar ratios improve the efficiency of cell treatment, complementing it with photodynamic approach. The cooperative enhancement interactions between mechanisms of chemo- and photodynamic therapies contribute to the obtained synergistic effect (namely “1+1>2”). A strong synergy of treatments arising from the combination of C60-mediated drug delivery and C60 photoexcitation indicates that a combination of chemo- and photodynamic treatments with C60-drug nanoformulations could provide a promising synergetic approach for cancer treatment.



https://doi.org/10.1016/B978-0-323-85595-2.00005-0
Jaster, Jonas; Dreßler, Elias; Geitner, Robert; Groß, Gregor Alexander
Synthesis and spectroscopic characterization of furan-2-carbaldehyde-d. - In: Molbank, ISSN 1422-8599, Bd. 2023 (2023), 2, M1654, S. 1-9

Here, we present a protocol for the one-step synthesis of the title compound in quantitative yield using adapted Vilsmeier conditions. The product was characterized by 1H-,2H-,13C-NMR-, as well as IR and Raman spectroscopy. Spectral data are given in detail.



https://doi.org/10.3390/M1654
Eckstein, Daniel; Schumann, Berit; Glahn, Felix; Krings, Oliver; Schober, Andreas; Foth, Heidi
Comparison of a 3D co-culture and a mini organ culture by testing barium sulphate and titanium dioxide nanoparticle aerosols. - In: Naunyn-Schmiedeberg's archives of pharmacology, ISSN 1432-1912, Bd. 396 (2023), 1, P055, S. S37

https://doi.org/10.1007/s00210-023-02397-6
Bui, Van-Chien; Nguyen, Thi-Huong
Mechanics of leukemic T-cell. - In: Journal of molecular recognition, ISSN 1099-1352, Bd. 36 (2023), 7, e3019, S. 1-7

Cell mechanics is a factor that determines cell growth, migration, proliferation, or differentiation, as well as trafficking inside the cytoplasm and organization of organelles. Knowledge about cell mechanics is critical to gaining insight into these biological processes. Here, we used atomic force microscopy to examine the elasticity, an important parameter of cell mechanics, of non-adherent Jurkat leukemic T-cells in both interphase and mitotic phases. We found that the elasticity of an individual cell does not significantly change at interphase. When a cell starts to divide, its elasticity increases in the transition from metaphase to telophase during normal division while the cell is stiffened right after it enters mitosis during abnormal division. At the end of the division, the cell elasticity gradually returned to the value of the mother cell. These changes may originate from the changes in cell surface tension during modulating actomyosin at the cleavage furrow, redistributing cell organelles, and constricting the contractile ring to sever mother cell to form daughters. The difference in elasticity patterns suggests that there is a discrepancy in the redistribution of the cell organelles during normal and abnormal division.



https://doi.org/10.1002/jmr.3019
Nguyen, Thi-Huong; Wang, Hanqing; Chen, Li-Yu; Echtermeyer, Danny; Pliquett, Uwe
Modulating SARS-CoV-2 spike protein reactivity through moderate electric fields: a pathway to innovative therapies. - In: ACS omega, ISSN 2470-1343, Bd. 8 (2023), 48, S. 45952-45960

In the quest for effective COVID-19 treatments and vaccines, traditional biochemical methods have been paramount, yet the challenge of accommodating diverse viral mutants persists. Recent simulations propose an innovative physical strategy involving an external electric field applied to the SARS-CoV-2 spike protein, demonstrating a reduced viral binding potential. However, limited empirical knowledge exists regarding the characteristics of the spike protein after E-field treatment. Our study addresses this gap by employing diverse analytical techniques to elucidate the impact of low/moderate E-field intensity on the binding of the SARS-CoV-2 spike protein to the ACE2 receptor. Through comprehensive analysis, we unveil a substantial reduction in the spike protein binding capacity validated via enzyme-linked immunosorbent assay and quartz crystal microbalance experiments. Remarkably, the E-field exposure induces significant protein structure rearrangement, leading to an enhanced negative surface zeta potential confirmed by dynamic light scattering. Circular dichroism spectroscopy corroborates these structural changes, showing alterations in the secondary protein structures. This study provides insights into SARS-CoV-2 spike protein modification under an E-field pulse, potentially paving the way for nonbiochemical strategies to mitigate viral reactivity and opening avenues for innovative therapeutic and preventive approaches against COVID-19 and its evolving variants.



https://doi.org/10.1021/acsomega.3c06811
Hack, Jasmin; Jordan, Moritz; Schmitt, Alina; Raru, Melissa; Zorn, Hannes Sönke; Seyfarth, Alex; Eulenberger, Isabel; Geitner, Robert
Ilm-NMR-P31: an open-access 31P nuclear magnetic resonance database and data-driven prediction of 31P NMR shifts. - In: Journal of cheminformatics, ISSN 1758-2946, Bd. 15 (2023), 122, S. 1-12

This publication introduces a novel open-access 31P Nuclear Magnetic Resonance (NMR) shift database. With 14,250 entries encompassing 13,730 distinct molecules from 3,648 references, this database offers a comprehensive repository of organic and inorganic compounds. Emphasizing single-phosphorus atom compounds, the database facilitates data mining and machine learning endeavors, particularly in signal prediction and Computer-Assisted Structure Elucidation (CASE) systems. Additionally, the article compares different models for 31P NMR shift prediction, showcasing the database’s potential utility. Hierarchically Ordered Spherical Environment (HOSE) code-based models and Graph Neural Networks (GNNs) perform exceptionally well with a mean squared error of 11.9 and 11.4 ppm respectively, achieving accuracy comparable to quantum chemical calculations.



https://doi.org/10.1186/s13321-023-00792-y
Radivoievych, Aleksandar; Prylutska, Svitlana; Zolk, Oliver; Ritter, Uwe; Frohme, Marcus; Grebinyk, Anna
Comparison of sonodynamic treatment set-ups for cancer cells with organic sonosensitizers and nanosonosensitizers. - In: Pharmaceutics, ISSN 1999-4923, Bd. 15 (2023), 11, 2616, S. 1-21

Cancer sonodynamic therapy (SDT) is the therapeutic strategy of a high-frequency ultrasound (US) combined with a special sonosensitizer that becomes cytotoxic upon US exposure. The growing number of newly discovered sonosensitizers and custom US in vitro treatment solutions push the SDT field into a need for systemic studies and reproducible in vitro experimental set-ups. In the current research, we aimed to compare two of the most used and suitable SDT in vitro set-ups - “sealed well” and “transducer in well” - in one systematic study. We assessed US pressure, intensity, and temperature distribution in wells under US irradiation. Treatment efficacy was evaluated for both set-ups towards cancer cell lines of different origins, treated with two promising sonosensitizer candidates - carbon nanoparticle C60 fullerene (C60) and herbal alkaloid berberine. C60 was found to exhibit higher sonotoxicity toward cancer cells than berberine. The higher efficacy of sonodynamic treatment with a “transducer in well” set-up than a “sealed well” set-up underlined its promising application for SDT in vitro studies. The “transducer in well” set-up is recommended for in vitro US treatment investigations based on its US-field homogeneity and pronounced cellular effects. Moreover, SDT with C60 and berberine could be exploited as a promising combinative approach for cancer treatment.



https://doi.org/10.3390/pharmaceutics15112616
Soter, Marcus; Apte, Gurunath; Madkatte, Dikshita; Nguyen, Thi-Huong
Insights into the writing process of the mask-free nanoprinting fluid force microscopy technology. - In: Engineering for a changing world, (2023), 1.2.118, S. 1-13

Platelets are activated immediately when contacting with non-physiological surfaces. Minimization of surface-induced platelet activation is important not only for platelet storage but also for other blood-contacting devices and implants. Chemical surface modification tunes the response of cells to contacting surfaces, but it requires a long process involving many regulatory challenges to transfer into a marketable product. Biophysical modification overcomes these limitations by modifying only the surface topography of already approved materials. The available large and random structures on platelet storage bags do not cause a significant impact on platelets because of their smallest size (only 1-3 μm) compared to other cells. We have recently demonstrated the feasibility of the mask-free nanoprint fluid force microscope (FluidFM) technology for writing dot-grid and hexanol structures. Here, we demonstrated that the technique allows the fabrication of nanostructures of varying features. Characteristics of nanostructures including height, width, and cross-line were analyzed and compared using atomic force microscopy imaging. Based on the results, we identified several technical issues, such as the printing direction and shape of structures that directly altered nanofeatures during printing. We confirmed that FluidFM is a powerful technique to precisely fabricate a variety of desired nanostructures for the development of platelet/blood-contacting devices if technical issues during printing are well controlled.



https://doi.org/10.22032/dbt.58725