Gesamtliste aus der Hochschulbibliographie

Anzahl der Treffer: 531
Erstellt: Wed, 17 Jul 2024 23:14:02 +0200 in 0.1082 sec


Hartmann, Robert; Puch, Florian
Numerical simulation of the deformation behavior of softwood tracheids for the calculation of the mechanical properties of wood-polymer composites. - In: Polymers, ISSN 2073-4360, Bd. 14 (2022), 13, 2574, insges. 25 S.

From a fiber composite point of view, an elongated softwood particle is a composite consisting of several thousand tracheids, which can be described as fiber wound hollow profiles. By knowing their deformation behavior, the deformation behavior of the wood particle can be described. Therefore, a numerical approach for RVE- and FEM-based modelling of the radial and tangential compression behavior of pine wood tracheids under room climate environment is presented and validated with optical and laser-optical image analysis as well as tensile and compression tests on pine sapwood veneer strips. According to the findings, at 23 ˚C and 12% moisture content, at least 10 MPa must be applied for maximum compaction of the earlywood tracheids. The latewood tracheids can withstand at least 100 MPa compression pressure and would deform elastically at this load by about 20%. The developed model can be adapted for other wood species and climatic conditions by adjusting the mechanical properties of the base materials of the cell wall single layers (cellulose, hemicellulose, lignin), the dimensions and the structure of the vessel elements, respectively.



https://doi.org/10.3390/polym14132574
Boeck, Thomas; Sanjari, Seyed Loghman; Becker, Tatiana
Parametric instability of a vertically driven magnetic pendulum with eddy-current braking by a flat plate. - In: Nonlinear dynamics, ISSN 1573-269X, Bd. 109 (2022), 2, S. 509-529

The vertically driven pendulum is one of the classical systems where parametric instability occurs. We study its behavior with an additional electromagnetic interaction caused by eddy currents in a nearby thick conducting plate that are induced when the bob is a magnetic dipole. The known analytical expressions of the induced electromagnetic force and torque acting on the dipole are valid in the quasistatic limit, i.e., when magnetic diffusivity of the plate is sufficiently high to ensure an equilibrium between magnetic field advection and diffusion. The equation of motion of the vertically driven pendulum is derived assuming that its magnetic dipole moment is aligned with the axis of rotation and that the conducting plate is horizontal. The vertical position of the pendulum remains an equilibrium with the electromagnetic interaction. Conditions for instability of this equilibrium are derived analytically by the harmonic balance method for the subharmonic and harmonic resonances in the limit of weak electromagnetic interaction. The analytical stability boundaries agree with the results of numerical Floquet analysis for these conditions but differ substantially when the electromagnetic interaction is strong. The numerical analysis demonstrates that the area of harmonic instability can become doubly connected. Bifurcation diagrams obtained numerically show the co-existence of stable periodic orbits in such conditions. For moderately strong driving, chaotic motions can be maintained for the subharmonic instability.



https://doi.org/10.1007/s11071-022-07555-8
Kurtash, Vladislav; Thiele, Sebastian; Mathew, Sobin; Jacobs, Heiko O.; Pezoldt, Jörg
Designing MoS2 channel properties for analog memory in neuromorphic applications. - In: Journal of vacuum science & technology, ISSN 2166-2754, Bd. 40 (2022), 3, S. 030602-1-030602-5

In this paper, we introduce analog nonvolatile random access memory cells for neuromorphic computing. The analog memory cell MoS2 channel is designed based on the simulation model including Fowler-Nordheim tunneling through a charge-trapping stack, trapping process, and transfer characteristics to describe a full write/read circle. 2D channel materials provide scaling to higher densities as well as preeminent modulation of the conductance by the accumulated space charge from the oxide trapping layer. In this paper, the main parameters affecting the distribution of memory states and their total number are considered. The dependence of memory state distribution on channel doping concentration and the number of layers is given. In addition, how the nonlinearity of memory state distribution can be overcome by variation of operating conditions and by applying pulse width modulation to the bottom gate voltage is also shown.



https://doi.org/10.1116/6.0001815
Al-Sayeh, Hani; Memishi, Bunjamin; Jibril, Muhammad Attahir; Paradies, Marcus; Sattler, Kai-Uwe
JUGGLER: autonomous cost optimization and performance prediction of big data applications. - In: SIGMOD '22, (2022), S. 1840-1854

Distributed in-memory processing frameworks accelerate iterative workloads by caching suitable datasets in memory rather than recomputing them in each iteration. Selecting appropriate datasets to cache as well as allocating a suitable cluster configuration for caching these datasets play a crucial role in achieving optimal performance. In practice, both are tedious, time-consuming tasks and are often neglected by end users, who are typically not aware of workload semantics, sizes of intermediate data, and cluster specification. To address these problems, we present Juggler, an end-to-end framework, which autonomously selects appropriate datasets for caching and recommends a correspondingly suitable cluster configuration to end users, with the aim of achieving optimal execution time and cost. We evaluate Juggler on various iterative, real-world, machine learning applications. Compared with our baseline, Juggler reduces execution time to 25.1% and cost to 58.1%, on average, as a result of selecting suitable datasets for caching. It recommends optimal cluster configuration in 50% of cases and near-to-optimal configuration in the remaining cases. Moreover, Juggler achieves an average performance prediction accuracy of 90%.



https://doi.org/10.1145/3514221.3517892
Wagner, Claus; Wetzel, Tim
Coherent structures in turbulent mixed convection flows through channels with differentially heated walls. - In: GAMM-Mitteilungen, ISSN 1522-2608, Bd. 45 (2022), 2, e202200006, S. 1-18

The occurrence and shape of turbulent structures in mixed convection flows through a differently heated vertical channel are investigated in terms of thermally induced attenuation and amplification of turbulent velocity, pressure, and temperature fluctuations using direct numerical simulations. It is shown that the wall-normal momentum transport is decreased and increased near the heated and cooled wall, respectively, and that this leads to a reduced and elevated production of turbulent velocity fluctuations in the streamwise velocity component in the aiding and opposing flow, respectively. The corresponding flow structures are smoother, faster and warmer in the aiding flow and aligned along the main flow, while the colder structures in the opposing flow are more frayed and less directed. The warmer flow structures in the aiding flow are overall more stable than the colder structures in the opposing flow. Besides, the study reveals that the position of the maximum temperature fluctuations moves toward the heated wall, so that the sweeps produced at the two walls are affected differently by the former. As a consequence, the distance and time period over which the fluctuations develop in the aiding flow are shorter than in the opposing flow. It is further shown that vortex structures oriented in the streamwise direction usually arise with an offset to the right or left above a sweep or an ejection, whereby the decreasing values of the correlation coefficients with increasing Grashof number indicate a weakening of the vortex structures. Since none of the evaluated vortex criteria, that is, the distributions of the vorticity, λ2- value or Rortex-value correlate well with the evaluated minima of the pressure fluctuations, they do not allow a clear identification of the vortex structures. Finally, analyzing the budget of the turbulent kinetic energy it is confirmed that the velocity fluctuations are only indirectly influenced by the buoyancy force. Thus, the attenuation and amplification of the turbulent velocity fluctuations is reflected in the reduction and exaggeration of the Reynolds shear stresses in the aiding and opposing flow, respectively.



https://doi.org/10.1002/gamm.202200006
Mai, Patrick; Hampl, Jörg; Bača, Martin; Brauer, Dana; Singh, Sukhdeep; Weise, Frank; Borowiec, Justyna; Schmidt, André; Küstner, Johanna Merle; Klett, Maren; Gebinoga, Michael; Schroeder, Insa S.; Markert, Udo R.; Glahn, Felix; Schumann, Berit; Eckstein, Diana; Schober, Andreas
MatriGrid® based biological morphologies: tools for 3D cell culturing. - In: Bioengineering, ISSN 2306-5354, Bd. 9 (2022), 5, 220, S. 1-41

Recent trends in 3D cell culturing has placed organotypic tissue models at another level. Now, not only is the microenvironment at the cynosure of this research, but rather, microscopic geometrical parameters are also decisive for mimicking a tissue model. Over the years, technologies such as micromachining, 3D printing, and hydrogels are making the foundation of this field. However, mimicking the topography of a particular tissue-relevant substrate can be achieved relatively simply with so-called template or morphology transfer techniques. Over the last 15 years, in one such research venture, we have been investigating a micro thermoforming technique as a facile tool for generating bioinspired topographies. We call them MatriGrid®s. In this research account, we summarize our learning outcome from this technique in terms of the influence of 3D micro morphologies on different cell cultures that we have tested in our laboratory. An integral part of this research is the evolution of unavoidable aspects such as possible label-free sensing and fluidic automatization. The development in the research field is also documented in this account.



https://doi.org/10.3390/bioengineering9050220
Döring, Nicola; Lehmann, Stephan; Schumann-Doermer, Claudia
Contraception in the German-language Wikipedia: a content and quality analysis :
Verhütung in der deutschsprachigen Wikipedia: eine Inhalts- und Qualitätsanalyse. - In: Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz, ISSN 1437-1588, Bd. 65 (2022), 6, S. 706-717

https://doi.org/10.1007/s00103-022-03537-8
Dölker, Eva-Maria; Lau, Stephan; Bernhard, Maria Anne; Haueisen, Jens
Perception thresholds and qualitative perceptions for electrocutaneous stimulation. - In: Scientific reports, ISSN 2045-2322, Bd. 12 (2022), 7335, S. 1-12

Our long-term goal is the development of a wearable warning system that uses electrocutaneous stimulation. To find appropriate stimulation parameters and electrode configurations, we investigate perception amplitude thresholds and qualitative perceptions of electrocutaneous stimulation for varying pulse widths, electrode sizes, and electrode positions. The upper right arm was stimulated in 81 healthy volunteers with biphasic rectangular current pulses varying between 20 and 2000 μs. We determined perception, attention, and intolerance thresholds and the corresponding qualitative perceptions for 8 electrode pairs distributed around the upper arm. For a pulse width of 150 μs, we find median values of 3.5, 6.9, and 13.8 mA for perception, attention, and intolerance thresholds, respectively. All thresholds decrease with increasing pulse width. Lateral electrode positions have higher intolerance thresholds than medial electrode positions, but perception and attention threshold are not significantly different across electrode positions. Electrode size between 15 × 15 mm2 and 40 × 40 mm2 has no significant influence on the thresholds. Knocking is the prevailing perception for perception and attention thresholds while mostly muscle twitching, pinching, and stinging are reported at the intolerance threshold. Biphasic stimulation pulse widths between 150 μs and 250 μs are suitable for electric warning wearables. Within the given practical limits at the upper arm, electrode size, inter-electrode distance, and electrode position are flexible parameters of electric warning wearables. Our investigations provide the basis for electric warning wearables.



https://doi.org/10.1038/s41598-022-10708-9
Labus Zlatanovic, Danka; Bergmann, Jean Pierre; Balos, Sebastian; Gräzel, Michael; Pejic, Dragan; Sovilj, Platon; Goel, Saurav
Influence of rotational speed on the electrical and mechanical properties of the friction stir spot welded aluminium alloy sheets. - In: Welding in the world, ISSN 1878-6669, Bd. 66 (2022), 6, S. 1179-1190

An efficient and productive joining technique to weld aluminium has become a priority challenge for promoting the use of aluminium in the electrical industry. One of the challenges is to obtain welds with superior mechanical properties with the consistent quality of weld surface as well as low electrical resistance. In this paper, the influence of rotational speed during the friction stir spot welding of AA 5754-H111 was studied to analyse the mechanical and electrical properties of the welds. The results from two rotational speeds (1000 rpm and 4500 rpm) are presented and compared to the base material. It was observed that the samples welded at 1000 rpm showed a higher average shear failure load (˜ 1.1 kN) compared to the samples welded at 4500 rpm (˜ 0.94 kN). The microhardness of the samples welded at 1000 rpm was higher than that of the base material, while the microhardness of samples welded at 4500 rpm was lower. It was also found that the friction welded sheets, regardless of the rotational speed used, showed increased electrical resistance compared to the base material, albeit this increase for the samples welded at 1000 rpm was about 42%, compared to samples welded at 4500 rpm where this increase was just 14%.



https://doi.org/10.1007/s40194-022-01267-8
Link, Steffen; Dimitrova, Anna; Krischok, Stefan; Ivanov, Svetlozar
Reversible sodiation of electrochemically deposited binder- and conducting additive-free Si-O-C composite layers. - In: Energy technology, ISSN 2194-4296, Bd. 10 (2022), 5, 2101164, S. 1-9

Binder- and conducting additive-free Si-O-C composite layers are deposited electrochemically under potentiostatic conditions from sulfolane-based organic electrolyte. Quartz crystal microbalance with damping monitoring is used for evaluation of the layer growth and its physical properties. The sodiation-desodiation performance of the material is afterward explored in Na-ion electrolyte. In terms of specific capacity, rate capability, and long-term electrochemical stability, the experiments confirm the advantages of applying the electrochemically formed Si-O-C structure as anode for Na-ion batteries. The material displays high (722 mAh g^-1) initial reversible capacity at j = 70 mA g^-1 and preserves stable long-term capacity of 540 mAh g^-1 for at least 400 galvanostatic cycles, measured at j = 150 mA g^-1. The observed high performance can be attributed to its improved mechanical stability and accelerated Na-ion transport in the porous anode structure. The origin of the material electroactivity is revealed based on X-Ray photoelectron spectroscopic analysis of pristine (as deposited), sodiated, and desodiated Si-O-C layers. The evaluation of the spectroscopic data indicates reversible activity of the material due to the complex contribution of carbon and silicon redox centers.



https://doi.org/10.1002/ente.202101164