Gesamtliste aus der Hochschulbibliographie

Anzahl der Treffer: 531
Erstellt: Tue, 16 Jul 2024 23:20:32 +0200 in 0.1159 sec


Dong, Yulian; Huo, Jingyao; Xu, Changfan; Ji, Deyang; Zhao, Huaping; Li, Liqiang; Lei, Yong
Research progress on vanadium sulfide anode materials for sodium and potassium-ion batteries. - In: Advanced Materials Technologies, ISSN 2365-709X, Bd. 9 (2024), 11, 2301840, S. 1-28

Considering environmental changes and the demand for more sustainable energy sources, stricter requirements have been placed on electrode materials for sodium and potassium-ion batteries, which are expected to provide higher energy and power density while being affordable and sustainable. Vanadium sulfide-based materials have emerged as intriguing contenders for the next generation of anode materials due to their high theoretical capacity, abundant reserves, and cost-effectiveness. Despite these advantages, challenges such as limited cycle life and restricted ion diffusion coefficients continue to impede their effective application in sodium and potassium-ion batteries. To overcome the limitations associated with electrochemical performance and circumvent bottlenecks imposed by the inherent properties of materials at the bulk scale, this review comprehensively summarizes and analyzes the crystal structures, modification strategies, and energy storage processes of vanadium sulfide-based electrode materials for sodium and potassium-ion batteries. The objective is to guide the development of high-performance vanadium-based sulfide electrode materials with refined morphologies and/or structures, employing environmentally friendly and cost-efficient methods. Finally, future perspectives and research suggestions for vanadium sulfide-based materials are presented to propel practical applications forward.



https://doi.org/10.1002/admt.202301840
Küstner, Merle Johanna; Eckstein, Diana; Brauer, Dana; Mai, Patrick; Hampl, Jörg; Weise, Frank; Schuhmann, Berit; Hause, Gerd; Glahn, Felix; Foth, Heidi; Schober, Andreas
Modular air-liquid interface aerosol exposure system (MALIES) to study toxicity of nanoparticle aerosols in 3D-cultured A549 cells in vitro. - In: Archives of toxicology, ISSN 1432-0738, Bd. 98 (2024), 4, S. 1061-1080

We present a novel lung aerosol exposure system named MALIES (modular air-liquid interface exposure system), which allows three-dimensional cultivation of lung epithelial cells in alveolar-like scaffolds (MatriGrids®) and exposure to nanoparticle aerosols. MALIES consists of multiple modular units for aerosol generation, and can be rapidly assembled and commissioned. The MALIES system was proven for its ability to reliably produce a dose-dependent toxicity in A549 cells using CuSO4 aerosol. Cytotoxic effects of BaSO4- and TiO2-nanoparticles were investigated using MALIES with the human lung tumor cell line A549 cultured at the air-liquid interface. Experiments with concentrations of up to 5.93 × 10^5 (BaSO4) and 1.49 × 10^6 (TiO2) particles/cm^3, resulting in deposited masses of up to 26.6 and 74.0 µg/cm^2 were performed using two identical aerosol exposure systems in two different laboratories. LDH, resazurin reduction and total glutathione were measured. A549 cells grown on MatriGrids® form a ZO-1- and E-Cadherin-positive epithelial barrier and produce mucin and surfactant protein. BaSO4-NP in a deposited mass of up to 26.6 µg/cm^2 resulted in mild, reversible damage (˜ 10% decrease in viability) to lung epithelium 24 h after exposure. TiO2-NP in a deposited mass of up to 74.0 µg/cm^2 did not induce any cytotoxicity in A549 cells 24 h and 72 h after exposure, with the exception of a 1.7 fold increase in the low exposure group in laboratory 1. These results are consistent with previous studies showing no significant damage to lung epithelium by short-term treatment with low concentrations of nanoscale BaSO4 and TiO2 in in vitro experiments.



https://doi.org/10.1007/s00204-023-03673-3
Sarısakalo&bovko;glu, Aynur;
[Rezension von: Schlüsselwerke der Journalismusforschung]. - In: Publizistik. - Wiesbaden : VS Verl. für Sozialwiss., 2000- , ISSN: 1862-2569 , ZDB-ID: 2273951-8, ISSN 1862-2569, Bd. 69 (2024), 1, S. 107-109

https://doi.org/10.1007/s11616-023-00827-2
Koch, Juliane; Liborius, Lisa; Kleinschmidt, Peter; Prost, Werner; Weimann, Nils; Hannappel, Thomas
Impact of the tip-to-semiconductor contact in the electrical characterization of nanowires. - In: ACS omega, ISSN 2470-1343, Bd. 9 (2024), 5, S. 5788-5797

Well-defined semiconductor heterostructures are a basic requirement for the development of high-performance optoelectronic devices. In order to achieve the desired properties, a thorough study of the electrical behavior with a suitable spatial resolution is essential. For this, various sophisticated tip-based methods can be employed, such as conductive atomic force microscopy or multitip scanning tunneling microscopy (MT-STM). We demonstrate that in any tip-based measurement method, the tip-to-semiconductor contact is decisive for reliable and precise measurements and in interpreting the properties of the sample. For that, we used our ultrahigh-vacuum-based MT-STM coupled in vacuo to a reactor for the preparation of nanowires (NWs) with metal organic vapor phase epitaxy, and operated our MT-STM as a four-point nanoprober on III-V semiconductor NW heterostructures. We investigated a variety of upright, free-standing NWs with axial as well as coaxial heterostructures on the growth substrates. Our investigation reveals charging currents at the interface between the measuring tip and the semiconductor via native insulating oxide layers, which act as a metal-insulator-semiconductor capacitor with charging and discharging conditions in the operating voltage range. We analyze in detail the observed I-V characteristics and propose a strategy to achieve an optimized tip-to-semiconductor junction, which includes the influence of the native oxide layer on the overall electrical measurements. Our advanced experimental procedure enables a direct relation between the tip-to-NW junction and the electronic properties of as-grown (co)axial NWs providing precise guidance for all future tip-based investigations.



https://doi.org/10.1021/acsomega.3c08729
Li, Zirui; Faheem, Faizan; Husung, Stephan
Collaborative Model-based Systems Engineering using Dataspaces and SysML v2. - In: Systems, ISSN 2079-8954, Bd. 12 (2024), 1, 18, S. 1-22

Collaborative Model-based Systems Engineering between companies is becoming increasingly important. The utilization of the modeling possibilities of the standard language SysML v2 and the multilateral data exchange via Dataspaces open new possibilities for efficient collaboration. Based on systemic approaches, a modeling concept for decomposing the system into sub-systems is developed as a basis for the exchange. In addition, based on the analysis of collaboration processes in the context of Systems Engineering, an architectural approach with a SysML editor and Dataspace for the exchange is elaborated. The architecture is implemented on the basis of open-source solutions. The investigations are based on an application example from precision engineering. The potential and challenges are discussed.



https://doi.org/10.3390/systems12010018
Käufer, Theo; Cierpka, Christian
Volumetric Lagrangian temperature and velocity measurements with thermochromic liquid crystals. - In: Measurement science and technology, ISSN 1361-6501, Bd. 35 (2024), 3, 035301, S. 1-11

We propose a Lagrangian method for simultaneous, volumetric temperature and velocity measurements. As tracer particles for both quantities, we employ encapsulated thermochromic liquid crystals (TLCs). We discuss the challenges arising from color imaging of small particles and present measurements in an equilateral hexagonal-shaped convection cell of height h = 60 mm and distance between the parallel side walls w = 10^4 mm, which corresponds to an aspect ratio Γ = 1.73. As fluid, we use a water-glycerol mixture to match the density of the TLC particles. We propose a densely-connected neural network, trained on calibration data, to predict the temperature for individual particles based on their particle image and position in the color camera images, which achieves uncertainties below 0.2 K over a temperature range of 3 K. We use Shake-the-Box to determine the 3D position and velocity of the particles and couple it with our temperature measurement approach. We validate our approach by adjusting a stable temperature stratification and comparing our measured temperatures with the theoretical results. Finally, we apply our approach to thermal convection at Rayleigh number Ra = 3.4 × 10^7 and Prandtl number Pr = 10.6. We can visualize detaching plumes in individual temperature and convective heat transfer snapshots. Furthermore, we demonstrate that our approach allows us to compute statistics of the convective heat transfer and briefly validate our results against the literature.



https://doi.org/10.1088/1361-6501/ad16d1
Rakhimov, Damir; Haardt, Martin
Analytical performance assessment of 2-D Tensor ESPRIT in terms of physical parameters. - In: IEEE open journal of signal processing, ISSN 2644-1322, Bd. 5 (2024), S. 122-131

In this paper, we present an analytical performance assessment of 2-D Tensor ESPRIT in terms of physical parameters. We show that the error in the r -mode depends only on two components, irrespective of the dimensionality of the problem. We obtain analytical expressions in closed form for the mean squared error (MSE) in each dimension as a function of the signal-to-noise (SNR) ratio, the array steering matrices, the number of antennas, the number of snapshots, the selection matrices, and the signal correlation. The derived expressions allow a better understanding of the difference in performance between the tensor and the matrix versions of the ESPRIT algorithm. The simulation results confirm the coincidence between the presented analytical expression and the curves obtained via Monte Carlo trials. We analyze the behavior of each of the two error components in different scenarios.



https://doi.org/10.1109/OJSP.2023.3337729
Engemann, Thomas; Ispas, Adriana; Bund, Andreas
Electrochemical reduction of tantalum and titanium halides in 1-butyl-1-methylpyrrolidinium bis (trifluoromethyl-sulfonyl)imide and 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate ionic liquids. - In: Journal of solid state electrochemistry, ISSN 1433-0768, Bd. 28 (2024), 5, S. 1557-1570

The electrodeposition of tantalum-titanium–based films using different tantalum and titanium halides was investigated in two ionic liquids, namely, 1-butyl-1-methylpyrrolidinium bis (trifluoromethyl-sulfonyl)imide ([BMP][TFSI]) and 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate ([BMP][OTf]). Cyclic voltammetry was used to analyse the electrochemistry of the electrolytes and potentiostatic deposition was performed to evaluate the feasibility of electrodepositing tantalum-titanium–based layers. Both the metal salts and the ionic liquid influenced the electrochemical reduction of the tantalum and titanium halides significantly. While titanium halides considerably retarded the reduction of tantalum pentahalides and inhibited electrodeposition in many electrolytes, an electrolyte composition from which tantalum and titanium-containing layers could be deposited was identified. Specifically, in TaBr5 and TiBr4 in [BMP][TFSI], TiBr4 did not inhibit the deposition of tantalum and titanium was co-deposited itself by a three-step reduction mechanism as confirmed by cyclic voltammetry and energy-dispersive X-ray spectroscopy. Furthermore, [BMP][TFSI] led to smoother and more compact deposits.



https://doi.org/10.1007/s10008-023-05773-7
Huang, Tianbai; Kupfer, Stephan; Geitner, Robert; Gräfe, Stefanie
Computational modelling and mechanistic insight into light-driven CO dissociation of square-planar rhodium(I) complexes. - In: ChemPhotoChem, ISSN 2367-0932, Bd. 8 (2024), 5, e202300219, S. 1-13

The activation step of Vaska-type Rh(I) complexes, such as the photocleavage of the Rh‑CO bond, plays an important role in the subsequent C-H activation. To elucidate the details of the photochemistry of Vaska-type Rh(I) complexes, such as trans-Rh(PMe3)2(CO)(Cl), we here present a computationally derived picture as obtained at the density functional level of theory (DFT) in combination with multireference wavefunction-based methods. We have identified that the photocleavage of CO proceeds via the metal-centered excited state, which is populated through intersystem crossing (ISC) from the dipole-allowed excited state S1. Moreover, the present study unraveled the reasons for the low C-H activation efficiency when using Rh featuring the bidentate ligand 1,2-bis(dimethylphosphino)ethane (dmpe), namely due to its unfavorable photochemical properties, i.e., the small driving force for light-induced CO loss and the fast deactivation of 3MC state back to the singlet ground state. In this study, we provide theoretical insight into mechanistic details underlying the light-induced CO dissociation process, for Rh complexes featuring PMe3 and dmpe ligands.



https://doi.org/10.1002/cptc.202300219
Schmidt, Leander; Schricker, Klaus; Diegel, Christian; Sachs, Florian; Bergmann, Jean Pierre; Knauer, Andrea; Romanus, Henry; Requardt, Herwig; Chen, Yunhui; Rack, Alexander
Effect of partial and global shielding on surface-driven phenomena in keyhole mode laser beam welding. - In: Welding in the world, ISSN 1878-6669, Bd. 68 (2024), 6, S. 1353-1374

Partial shielding by means of local gas supply has proven to be very effective in reducing spatter. Besides the effect of gas-induced dynamic pressure, the shielding of oxygen is also highly relevant for melt pool dynamics and spatter formation due to the growth of oxides and the influence on surface tension. Therefore, this paper addresses the effect of local supplied argon on oxide growth and seam topography during keyhole mode laser beam welding of high-alloy steel AISI 304. To determine the shielding quality, the results are compared to laser beam welding in a global argon atmosphere. The topography of the upper weld seams was analyzed by scanning electron microscopy (SEM). An X-ray microanalysis (EDX) in line scan modus was performed to determine and to locate the elements which are covering the specimen surface. The chemical state of the found elements was quantified by X-ray photoelectron spectroscopy (XPS). In a last step, high-speed synchrotron X-ray imaging was performed to separate the effect of the gas-induced pressure and the gas-induced shielding on keyhole geometry. The results show that a local supply of argon contributes to a significant difference in oxide growth, affecting melt pool convection and weld seam geometry. It was further shown that the effect of gas flows at low flow rates is primarily because of oxygen shielding, as no significant difference in keyhole geometry was found by high-speed synchrotron X-ray imaging.



https://doi.org/10.1007/s40194-023-01627-y