Journal articles

Anzahl der Treffer: 500
Erstellt: Sun, 30 Jun 2024 19:51:14 +0200 in 0.0903 sec


Krauß, Benedikt; Link, Dietmar; Stodtmeister, Richard; Nagel, Edgar; Vilser, Walthard; Klee, Sascha
Modulation of human intraocular pressure using a pneumatic system. - In: Translational Vision Science & Technology, ISSN 2164-2591, Bd. 10 (2021), 14, 4, S. 1-9

https://doi.org/10.1167/tvst.10.14.4
Gast, Richard; Knösche, Thomas R.; Schmidt, Helmut
Mean-field approximations of networks of spiking neurons with short-term synaptic plasticity. - In: Physical review, ISSN 2470-0053, Bd. 104 (2021), 4, 044310, insges. 15 S.

Low-dimensional descriptions of spiking neural network dynamics are an effective tool for bridging different scales of organization of brain structure and function. Recent advances in deriving mean-field descriptions for networks of coupled oscillators have sparked the development of a new generation of neural mass models. Of notable interest are mean-field descriptions of all-to-all coupled quadratic integrate-and-fire (QIF) neurons, which have already seen numerous extensions and applications. These extensions include different forms of short-term adaptation considered to play an important role in generating and sustaining dynamic regimes of interest in the brain. It is an open question, however, whether the incorporation of presynaptic forms of synaptic plasticity driven by single neuron activity would still permit the derivation of mean-field equations using the same method. Here we discuss this problem using an established model of short-term synaptic plasticity at the single neuron level, for which we present two different approaches for the derivation of the mean-field equations. We compare these models with a recently proposed mean-field approximation that assumes stochastic spike timings. In general, the latter fails to accurately reproduce the macroscopic activity in networks of deterministic QIF neurons with distributed parameters. We show that the mean-field models we propose provide a more accurate description of the network dynamics, although they are mathematically more involved. Using bifurcation analysis, we find that QIF networks with presynaptic short-term plasticity can express regimes of periodic bursting activity as well as bistable regimes. Together, we provide novel insight into the macroscopic effects of short-term synaptic plasticity in spiking neural networks, as well as two different mean-field descriptions for future investigations of such networks.



https://doi.org/10.1103/PhysRevE.104.044310
Numssen, Ole; Zier, Anna-Leah; Thielscher, Axel; Hartwigsen, Gesa; Knösche, Thomas R.; Weise, Konstantin
Efficient high-resolution TMS mapping of the human motor cortex by nonlinear regression. - In: NeuroImage, ISSN 1095-9572, Bd. 245 (2021), 118654, insges. 11 S.

Transcranial magnetic stimulation (TMS) is a powerful tool to investigate causal structure-function relationships in the human brain. However, a precise delineation of the effectively stimulated neuronal populations is notoriously impeded by the widespread and complex distribution of the induced electric field. Here, we propose a method that allows rapid and feasible cortical localization at the individual subject level. The functional relationship between electric field and behavioral effect is quantified by combining experimental data with numerically modeled fields to identify the cortical origin of the modulated effect. Motor evoked potentials (MEPs) from three finger muscles were recorded for a set of random stimulations around the primary motor area. All induced electric fields were nonlinearly regressed against the elicited MEPs to identify their cortical origin. We could distinguish cortical muscle representation with high spatial resolution and localized them primarily on the crowns and rims of the precentral gyrus. A post-hoc analysis revealed exponential convergence of the method with the number of stimulations, yielding a minimum of about 180 random stimulations to obtain stable results. Establishing a functional link between the modulated effect and the underlying mode of action, the induced electric field, is a fundamental step to fully exploit the potential of TMS. In contrast to previous approaches, the presented protocol is particularly easy to implement, fast to apply, and very robust due to the random coil positioning and therefore is suitable for practical and clinical applications.



https://doi.org/10.1016/j.neuroimage.2021.118654
Sabel, Bernhard A.; Kresinsky, Anton; Cárdenas-Morales, Lizbeth Karina; Haueisen, Jens; Hunold, Alexander; Dannhauer, Moritz; Antal, Andrea
Evaluating current density modeling of non-invasive eye and brain electrical stimulation using phosphene thresholds. - In: IEEE transactions on neural systems and rehabilitation engineering, ISSN 1558-0210, Bd. 29 (2021), S. 2133-2141

https://doi.org/10.1109/TNSRE.2021.3120148
Vasconcelos, Beatriz; Fiedler, Patrique; Machts, René; Haueisen, Jens; Fonseca, Carlos
The Arch electrode: a novel dry electrode concept for improved wearing comfort. - In: Frontiers in neuroscience, ISSN 1662-453X, Bd. 15 (2021), 748100, S. 1-14

https://doi.org/10.3389/fnins.2021.748100
Blum, Maren-Christina; Hunold, Alexander; Solf, Benjamin; Klee, Sascha
Ocular direct current stimulation affects retinal ganglion cells. - In: Scientific reports, ISSN 2045-2322, Bd. 11 (2021), 17573, S. 1-9

Ocular current stimulation (oCS) with weak current intensities (a few mA) has shown positive effects on retinal nerve cells, which indicates that neurodegenerative ocular diseases could be treated with current stimulation of the eye. During oCS, a significant polarity-independent reduction in the characteristic P50 amplitude of a pattern-reversal electroretinogram was found, while no current stimulation effect was found for a full field electroretinogram (ffERG). The ffERG data indicated a trend for a polarity-dependent influence during oCS on the photopic negative response (PhNR) wave, which represents the sum activity of the retinal ganglion cells. Therefore, an ffERG with adjusted parameters for the standardized measurement of the PhNR wave was combined with simultaneous oCS to study the potential effects of direct oCS on cumulative ganglion cell activity. Compared with that measured before oCS, the PhNR amplitude in the cathodal group increased significantly during current stimulation, while in the anodal and sham groups, no effect was visible (α = 0.05, pcathodal = 0.006*). Furthermore, repeated-measures ANOVA revealed a significant difference in PhNR amplitude between the anodal and cathodal groups as well as between the cathodal and sham groups (p* ≤ 0.0167, pcathodal - anodal = 0.002*, pcathodal - sham = 0.011*).



https://doi.org/10.1038/s41598-021-96401-9
Ley, Sebastian; Sachs, Jürgen; Faenger, Bernd; Hilger, Ingrid; Helbig, Marko
MNP-enhanced microwave medical imaging by means of pseudo-noise sensing. - In: Sensors, ISSN 1424-8220, Bd. 21 (2021), 19, 6613, insges. 23 S.

https://doi.org/10.3390/s21196613
Shatooti, Sara; Mozaffari, Morteza; Reiter, Günter; Zahn, Diana; Dutz, Silvio
Heat dissipation in Sm3+ and Zn2+ co-substituted magnetite (Zn0.1SmxFe2.9-xO4) nanoparticles coated with citric acid and pluronic F127 for hyperthermia application. - In: Scientific reports, ISSN 2045-2322, Bd. 11 (2021), 16795, S. 1-14

In this work, Sm3+ and Zn2+ co-substituted magnetite Zn0.1SmxFe2.9-xO4 (x = 0.0, 0.01, 0.02, 0.03, 0.04 and 0.05) nanoparticles, have been prepared via co-precipitation method and were electrostatically and sterically stabilized by citric acid and pluronic F127 coatings. The coated nanoparticles were well dispersed in an aqueous solution (pH 5.5). Magnetic and structural properties of the nanoparticles and their ferrofluids were studied by different methods. XRD studies illustrated that all as-prepared nanoparticles have a single phase spinel structure, with lattice constants affected by samarium cations substitution. The temperature dependence of the magnetization showed that Curie temperatures of the uncoated samples monotonically increased from 430 to 480 ˚C as Sm3+ content increased, due to increase in A-B super-exchange interactions. Room temperature magnetic measurements exhibited a decrease in saturation magnetization of the uncoated samples from 98.8 to 71.9 emu/g as the Sm3+ content increased, which is attributed to substitution of Sm3+ (1.5 µB) ions for Fe3+ (5 µB) ones in B sublattices. FTIR spectra confirmed that Sm3+ substituted Zn0.1SmxFe2.9-xO4 nanoparticles were coated with both citric acid and pluronic F127 properly. The mean particle size of the coated nanoparticles was 40 nm. Calorimetric measurements showed that the maximum SLP and ILP values obtained for Sm3+ substituted nanoparticles were 259 W/g and 3.49 nHm2/kg (1.08 mg/ml, measured at f = 290 kHz and H = 16kA/m), respectively, that are related to the sample with x = 0.01. Magnetic measurements revealed coercivity, which indicated that hysteresis loss may represent a substantial portion in heat generation. Our results show that these ferrofluids are potential candidates for magnetic hyperthermia applications.



https://doi.org/10.1038/s41598-021-96238-2
Chamaani, Somayyeh; Akbarpour, Alireza; Helbig, Marko; Sachs, Jürgen
Matrix pencil method for vital sign detection from signals acquired by microwave sensors. - In: Sensors, ISSN 1424-8220, Bd. 21 (2021), 17, 5735, insges. 24 S.

Microwave sensors have recently been introduced as high-temporal resolution sensors, which could be used in the contactless monitoring of artery pulsation and breathing. However, accurate and efficient signal processing methods are still required. In this paper, the matrix pencil method (MPM), as an efficient method with good frequency resolution, is applied to back-reflected microwave signals to extract vital signs. It is shown that decomposing of the signal to its damping exponentials fulfilled by MPM gives the opportunity to separate signals, e.g., breathing and heartbeat, with high precision. A publicly online dataset (GUARDIAN), obtained by a continuous wave microwave sensor, is applied to evaluate the performance of MPM. Two methods of bandpass filtering (BPF) and variational mode decomposition (VMD) are also implemented. In addition to the GUARDIAN dataset, these methods are also applied to signals acquired by an ultra-wideband (UWB) sensor. It is concluded that when the vital sign is sufficiently strong and pure, all methods, e.g., MPM, VMD, and BPF, are appropriate for vital sign monitoring. However, in noisy cases, MPM has better performance. Therefore, for non-contact microwave vital sign monitoring, which is usually subject to noisy situations, MPM is a powerful method.



https://doi.org/10.3390/s21175735
Beltrachini, Leandro; Ellenrieder, Nicolas von; Eichardt, Roland; Haueisen, Jens
Optimal design of on-scalp electromagnetic sensor arrays for brain source localisation. - In: Human brain mapping, ISSN 1097-0193, Bd. 42 (2021), 15, S. 4869-4879

Optically pumped magnetometers (OPMs) are quickly widening the scopes of noninvasive neurophysiological imaging. The possibility of placing these magnetic field sensors on the scalp allows not only to acquire signals from people in movement, but also to reduce the distance between the sensors and the brain, with a consequent gain in the signal-to-noise ratio. These advantages make the technique particularly attractive to characterise sources of brain activity in demanding populations, such as children and patients with epilepsy. However, the technology is currently in an early stage, presenting new design challenges around the optimal sensor arrangement and their complementarity with other techniques as electroencephalography (EEG). In this article, we present an optimal array design strategy focussed on minimising the brain source localisation error. The methodology is based on the Cramér-Rao bound, which provides lower error bounds on the estimation of source parameters regardless of the algorithm used. We utilise this framework to compare whole head OPM arrays with commercially available electro/magnetoencephalography (E/MEG) systems for localising brain signal generators. In addition, we study the complementarity between EEG and OPM-based MEG, and design optimal whole head systems based on OPMs only and a combination of OPMs and EEG electrodes for characterising deep and superficial sources alike. Finally, we show the usefulness of the approach to find the nearly optimal sensor positions minimising the estimation error bound in a given cortical region when a limited number of OPMs are available. This is of special interest for maximising the performance of small scale systems to ad hoc neurophysiological experiments, a common situation arising in most OPM labs.



https://doi.org/10.1002/hbm.25586