Dissertationen ab 2018

Anzahl der Treffer: 231
Erstellt: Sat, 29 Jun 2024 23:16:27 +0200 in 0.5851 sec


Ortlepp, Ingo;
Mikrointerferometer auf Basis von interferenzoptischen Stehende-Welle-Sensoren. - Ilmenau : Universitätsbibliothek, 2020. - 1 Online-Ressource (xi, 161 Seiten)
Technische Universität Ilmenau, Dissertation 2020

Seit dem Michelson-Morley-Experiment im Jahr 1887 werden Interferometer erfolgreich in Forschung und Industrie für verschiedenste Aufgaben eingesetzt. Laserinterferometer sind heute hochentwickelte und enorm leistungsfähige Geräte mit beachtlichen Parametern hinsichtlich Messauflösung und Messunsicherheit. Diese Leistungsfähigkeit jedoch beruht auf einem äußerst komplexen Aufbau mit einer großen Anzahl optischer Präzisionskomponenten, weshalb klassische Laserinterferometer kostenintensive Messmittel nahezu ausschließlich für Aufgaben der Präzisionsmesstechnik mit höchsten Anforderungen darstellen. Gemeinsam mit der begrenzten Miniaturisierbarkeit von diskret aufgebauten Interferometern resultiert daraus eine Einschränkung der möglichen Einsatzgebiete. Das Stehende-Welle-Interferometer stellt einen neuen Interferometeransatz dar, mit dem die genannten Einschränkungen überwunden werden können. Das Konzept basiert auf einer optischen stehenden Welle, welche im Raum vor einem Spiegel bei senkrechter Reflexion eines Laserstrahls in sich selbst entsteht. Die Intensitätsminima und -maxima der stehenden Welle sind räumlich an den Spiegel gekoppelt und können mit einem dünnen, transparenten Photosensor detektiert werden. Eine Zählung der den Sensor bei einer Spiegelverschiebung durchlaufenden Extrema ermöglicht bei bekannter Wellenlänge der Laserquelle eine Bestimmung des Verschiebewegs des Spiegels. Da sich der genannte Sensor im optischen Strahlengang befindet, beeinflusst dieser direkt die stehende Welle. Für den Sensor existieren daher besondere Anforderungen hinsichtlich dessen Dicke, Transparenz, Reflexionsgrad und Ebenheit. Im Rahmen dieser Arbeit werden entsprechende Stehende-Welle-Sensoren für hochdynamische Messungen und verschiedene optische Aufbauten entwickelt und untersucht. Die Sensoren basieren auf kommerziellen SOI-Wafern und können mit üblichen Halbleitertechnologien hergestellt werden. Bei der Entwicklung liegen die Schwerpunkte auf einer hohen Grenzfrequenz, auf der Entspiegelung der Sensoren und auf Verfahren zur mechanischen Stabilisierung der äußerst dünnen photoaktiven Schicht. Die elektrischen, optischen und elektrooptischen Eigenschaften der Sensoren werden umfangreich untersucht und deren Einsatz in Homodyn-, Heterodyn - und Interferometeraufbauten mit Phasenmodulation nachgewiesen.



https://www.db-thueringen.de/receive/dbt_mods_00045571
Thomae, Daniel;
Talbot-Lithografie und deren Anwendung zur Realisierung eines Kreuz-Echelle-Spektrometers. - Ilmenau, 2020. - X, 97 Seiten, Seite XI-LXX
Technische Universität Ilmenau, Dissertation 2020

ISBN 978-3-9822352-0-2

Die optische Spektroskopie hat im Verlauf von 150 Jahren schrittweise Anwendungsfelder von den Grundlagenwissenschaften bis hin zur industriellen Messtechnik erschlossen. Diese Vielfalt zieht eine Spezialisierung verfügbarer Messgeräte auf einzelne Applikationen nach sich. Lücken bestehen jedoch noch im Bereich einiger Feldapplikationen, wo einerseits widriger Umgebungsbedingungen vor Ort als auch hohe Gerätekosten die Messwerterfassung in einem zentralen Analyselabor erzwingen. Dies bedeutet meist die Beschränkung auf Stichproben und ein zeitverzögertes Messergebnis, was zur Prozesskontrolle nur bedingt taugt. Die vorliegende Arbeit schlägt für den Bereich der Atomemissionsspektroskopie eine neue Variante des Echelle-Spektrometers vor: Durch Integration der beiden Dispersionsschritte, welche nach dem Stand der Technik mit zwei getrennten Elementen realisiert werden, in ein einziges Beugungsgitter kann das Gerätedesign deutlich vereinfacht und miniaturisiert werden. Potentiell erhöht dies die Robustheit und senkt die Fertigungskosten. Im Mittelpunkt der Arbeit steht die Bewertung des Konzepts von Kreuz-Echelle-Spektrometern im Vergleich zu typischen Kompaktspektrometern. Besonderes Augenmerk wird auf Kenngrößen wie spektrales Auflösungsvermögen und Beugungseffizienz gelegt. Es werden die Vor- und Nachteile verschiedener Fertigungstechnologien für das Gitter diskutiert. Für den experimentellen Prinzipnachweis wird ein Kreuz-Echelle-Gitter gefertigt und für dieses ein Prototypenspektrometer ausgelegt und realisiert. Letzteres wird anhand praktischer Beispielmessungen erprobt und es werden Optimierungspotentiale benannt. Das zu fertigende Kreuz-Echelle-Gitter als Kernkomponente zeichnet sich durch die Überlagerung einer sehr tiefen und groben mit einer relativ flachen und feinen Struktur aus. Gängige Gitterfertigungsmethoden versagen hier, sodass mit der Talbot-Lithografie ein Alternativverfahren zum Einsatz kommt. Für dieses wird ein modularer und flexibler Belichtungsaufbau samt zugehöriger Softwareinfrastruktur beschrieben, um damit maßgeschneiderte Profilformen fertigen zu können. Ferner werden die Abbildungsfehler des Talbot-Effekts eingehend analysiert und deren Minimierungsmöglichkeiten aufgezeigt. Ebenso wird die Übertragung von statistischen Defekten bei der Talbot-Lithografie untersucht und auch hierfür Optimierungsmöglichkeiten abgeleitet.



Ziegler, Mario;
Metastable atomic layer deposition. - Ilmenau, 2020. - XVII, 154 Seiten
Technische Universität Ilmenau, Dissertation 2020

Die vorliegende Arbeit befasst sich mit der Synthese von breitbandig absorbierenden dreidimensionalen Hybrid-Nanostrukturen unter Verwendung eines neuartiges Abscheideprozesses: Metastabile Atomlagenabscheidung (kurz MS-ALD). Klassischerweise wird die Atomlagenabscheidung für die Abscheidung von planaren, binären Dünnschichten verwendet. Dabei werden zwei Präkursoren abwechselnd in einen Reaktor eingelassen. Die Präkursoren reagieren jeweils mit der Substratoberfläche, wobei die Reaktionen selbstlimitierend sind. So bindet nur eine Monolage der Präkursoren an der Oberfläche an. Dadurch lassen sich Dünnschichten mit perfekter Schichtdickenkontrolle homogen und winkeltreu herstellen. Im Gegensatz dazu können mit MS-ALD 3D-Strukturen hergestellt werden. Essentiell für diesen Prozess ist die Auswahl des Substrates. Das Substrat reagiert, im Gegensatz zur klassischen ALD, mit einem der beiden Präkursoren und bildet eine metastabile Phase aus. Diese metastabile Phase zerfällt augenblicklich in ihren ursprünglichen Anfangszustand unter Freigabe des Präkursors. Die Reaktion führt zum einen zu einer morphologischen Veränderung der Substratoberfläche und zum anderen zu einer Anreicherung des freigegebenen Präkursors an der Substratoberfläche. Durch den Einlass des zweiten Präkursors kommt es zu weiteren Reaktionen mit dem freigegebenen Präkursor. Diese Nebenreaktionen bewirken die Entstehung der beobachtbaren 3D-Strukturen. Kern dieser Arbeit ist die Untersuchung des Einflusses der Prozessparameter der MS-ALD bei Verwendung zweier unterschiedlicher Substrate auf die Morphologie der resultierenden Strukturen. Da MS-ALD im Verlauf der Arbeit entwickelt wurde, wird zudem ein möglicher Wachstumsprozess diskutiert. Der zweite Teil der Arbeit untersucht die Absorptionseiegenschaften der Strukturen vom ultravioletten bis zum nahem Infrarotbereich. Die hergestellten Strukturen erscheinen matt-schwarz und weisen eine extrem hohe Absorption bei senkrecht einfallender Strahlung auf (mehr als 99 % im Bereich von 220 nm bis 1582 nm). Die hohe Absorption und die Möglichkeit der problemlosen Skalierbarkeit des MS-ALD-Prozesses können dazu beitragen, neue Lösungsansätze für die Nutzung von Solarenergie zur regenerativen Stromerzeugung zu entwickeln.



Meister, Andreas;
Ein Beitrag zur Modellbildung und Steuerung der Nanopositionier- und Nanomessmaschine 200. - Ilmenau, 2020. - XV, 112 Seiten
Technische Universität Ilmenau, Dissertation 2020

Stetiger Fortschritt im Bereich der Digitalisierung und Informationsverarbeitung erfordern immer feinere optische und Halbleiterstrukturen. Diese sind nur durch immer hochauflösendere Fertigungsverfahren herstellbar. Damit steigt die Bedeutung hochpräziser Nanopositionier- und Nanomesstechnik. Sie wird einerseits für die Überprüfung hergestellter Strukturen, als auch für die eigentliche Fertigung benötigt. Zusätzlich benötigen komplexere Strukturen mehr Bauraum. Somit steigt der Bedarf an Nanopositionier- und Nanomessmaschinen mit großem Bewegungsbereich in Kombination mit höchstmöglicher Präzision. Mit Arbeitsbereichen von mehreren hundert Millimetern sowie Mess- und Positionierauflösungen im Nanometerbereich schließen sie die Lücke zwischen Koordinatenmessmaschinen und Rastersondenmikroskopen. Die Nanopositionier- und Nanomessmaschine 200 ist einer der fortschrittlichsten Vertreter. Ihr einzigartiger Aufbau ermöglicht kleinste Messunsicherheiten von unter 30 nm in einem Arbeitsbereich von 200 x 200 x 25 mm^3. Mess- und Fabrikationsaufgaben können sowohl bei Umgebungsdruck, als auch im technischen Vakuum erfolgen. Das dafür realisierte Antriebskonzept stellt besondere Aufgaben an die Steuer- und Regelungsalgorithmen. In der vorliegenden Arbeit werden neue Modelle der Antriebssysteme und bewegten Achsen entworfen und weiterentwickelt. Durch die spezielle Anordnung der Baugruppen für die vertikale Bewegung führen Rotationen zu erheblicher Wechselwirkung mit allen anderen Messachsen. Ein präzises Bewegungsmodell ermöglicht eine signifikante Verbesserung der Regelgüte. Daher wird das bisherige plattformbezogene Reibungsmodell durch ein führungsbezogenes ersetzt. Restfehler zwischen mathematischer Beschreibung und Messung können somit deutlich reduziert werden. Weiterhin wird das Modell um verschiedene Ansätze erweitert, die einen Einfluss der Kippwinkel berücksichtigen. Diese werden mit Messdaten abgeglichen und bewertet. Aufgrund auftretender Rastkräfte sind positionsabhängig hohe Antriebsströme in den planaren Antrieben erforderlich. Die vorhandenen Kühlsysteme können nicht hinreichend schnell auf die Änderungen der in Wärme umgesetzten Verlustleistung reagieren. Dadurch entstehende Temperaturschwankungen sind beim Betrieb in Vakuum grundsätzlich zu vermeiden. Aufbauend auf einer Kompensation der Rastkräfte wird eine Strategie entwickelt, um die Leistungsaufnahme auf einem möglichst niedrigen Niveau zu stabilisieren. Hierfür werden verschiedene Methoden vorgeschlagen und untersucht. Zur Vermeidung von Störkräften werden minimale Schwankungen der Leistungsaufnahme zugelassen, die so kurzfristig ausgeglichen werden, dass keine relevanten Temperaturschwankungen entstehen.



Alsharef, Mohamed;
Design and performance analysis of Tri-gate GaN HEMTs. - Ilmenau : Universitätsbibliothek, 2020. - 1 Online-Ressource (XIV, 126 Seiten)
Technische Universität Ilmenau, Dissertation 2020

HEMTs (high electron mobility transistors) auf GaN-Basis besitzen großes Potenzial für die HF- (Hochfrequenz) und Leistungselektronik und werden bereits in HF-Leistungsverstärkern und als Leistungsschalter verwendet. Üblicherweise sind GaN HEMTs Normally-On Transistoren (d.h. Transistoren, die sich bei einer Gatespannung von 0 V im Ein-Zustand befinden), was für Anwendungen wie Fail-Safe-Leistungsschalter und HF-Verstärker mit nur einer Versorgungsspannung nachteilig ist. Es schwierig, GaN HEMTs mit Normally-Off-Charakteristik (HEMTs mit positiver Schwellspannung) zu realisieren, da in diesen Transistoren die Dichte des sich an der Grenzfläche Barriere/Puffer ausbildenden 2DEG (zweidimensionales Elektronengas) auf Grund starker Polarisationseffekte erheblich größer als in GaAs und InP HEMTs ist. Die Realisierung schneller HF-HEMTs erfordert kurze Gates. Allerdings leiden Transistoren mit sehr kurzen Gates häufig unter Kurzkanaleffekten und einer reduzierten Steuerwirkung des Gates, was zu einer Verschlechterung des Verhaltens im Aus-Zustand (erhöhte Werte für den Subthreshold Swing und das Drain-Induced Barrier Lowering) und im Ein-Zustand (erhöhter Drainleitwert) führt. In jüngster Zeit wird bei MOSFETs und HEMTs das Tri-Gate-Design angewendet, um die Gatesteuerwirkung zu verbessern und Kurzkanaleffekte zu unterdrücken. So wurden bereits Tri-Gate-Transistoren mit ausgezeichnetem Skalierungsverhalten, verbesserten Eigenschaften und, speziell im Fall von GaN Tri-Gate-HEMTs, positiver Schwellspannung, demonstriert. Auf der anderen Seite leiden GaN Tri-Gate-HEMTs mit Normally-Off-Charakteristik jedoch unter großen Parasitäten, die das HF-Verhalten (insbesondere die Transitfrequenz) beeinträchtigen. Die Verbesserung des HF-Verhaltens und eine Reduzierung der Parasitäten von GaN Tri-Gate-HEMTs ist daher dringend nötig. Das erfordert jedoch ein tiefes Eindringen in die Physik dieser Bauelemente. In der vorliegenden Arbeit werden umfassende theoretische Untersuchungen und Bauelementesimulationen zu GaN Tri-Gate-HEMT beschrieben, die zu einem deutlichen verbesserten Verständnis der Wirkungsweise von GaN Tri-Gate-HEMTs führten. So konnten das Potential dieses Transistortyps bewertet, Designregeln erarbeitet und vorteilhafte Transistordesigns entwickelt werden. In der Arbeit wird gezeigt, dass eine Verringerung der Bodyweite bei gegebener Gatespannung zu einer Verringerung der Ladungsträgerdichte im 2DEG führt, dass die Schwellspannung maßgeblich von der Bodyweite bestimmt wird und dass bei hinreichend geringer Bodyweite der Übergang vom Normall-On- zum Normally-Off-Betrieb erfolgt. Es wird auch gezeigt, dass der Abstand zwischen benachbarten Bodies nur einen geringen Einfluss auf die Schwellspannung hat. Darüber hinaus wird demonstriert, dass im Fall weiter Bodies (> 200 nm) der Kanal sowohl durch das Top-Gate als auch durch die Seiten-Gates gesteuert wird, während bei schmaleren Bodies die Steuerwirkung durch das Top-Gate geringer wird und die Verhältnisse im Kanal im Wesentlichen durch das Seiten-Gates bestimmt werden. In der Arbeit wird weiterhin Rolle des Designs der AlGaN-Barriere (Al-Gehalt, Dicke) untersucht und demonstriert, dass die Gestaltung der Barriere bei schmalen Bodies nur einen begrenzten Einfluss auf die Schwellspannung hat. Die Untersuchungen zeigen deutlich, dass das mit dem Tri-Gate-Konzept Normally-Off-Transistoren realisierbar sind, dass das Transistorverhalten im Ein-Zustand verbessert (höhere Steilheit) wird, und dass Kurzkanaleffekte im Aus-Zustand wirkungsvoll unterdrückt. Es wird auch demonstriert, dass GaN Tri-Gate HEMTs höhere Durchbruchspannungen zeigen und näher an der theoretischen Grenze für GaN-Bauelemente arbeiten als planare GaN HEMTs. Ein weiteres Ergebnis der vorliegenden Arbeit ist der Nachweis, dass GaN Tri-Gate-HEMTs mit sorgfältig optimiertem Design den planaren HEMTs auch hinsichtlich des HF-Verhaltens überlegen sind. Ein Mittel zur Verbesserung des HF-Verhaltens ist die Reduzierung der Body-Ätzhöhe, die zur Verringerung der parasitären Kopplung zwischen den Body-Seitenwänden und den Source/Drain-Elektroden und somit zu einer geringeren Gatekapazität führt. Eine weitere Maßnahme zur Reduzierung der Gatekapazität ist die Beschichtung der Body-Seitenwände mit einem Dielektrikum (z.B. SiN). Das verringert die Streukapazität, da jetzt die mit dem Gatemetall gefüllte Lücken zwischen benachbarten Bodies schmaler sind. Schließlich wird gezeigt, dass die Polarisationsladung an der Grenzfläche Barrier/Kanal und somit die Elektronendichte im 2DEG durch Erhöhung des Al-Gehalts der AlGaN-Barriere oder durch Nutzung eines anderen Materials für die Barriere (z.B. gitterangepasstes In0.17 Al0.83 N) gesteigert werden kann.



https://www.db-thueringen.de/receive/dbt_mods_00043837
Vakaliuk, Oleksii;
Novel Lorentz Force Velocimetry system based on bulk high-temperature superconductors. - Ilmenau : Universitätsbibliothek, 2020. - 1 Online-Ressource (iii, 174 Seiten)
Technische Universität Ilmenau, Dissertation 2020

Die Lorentzkraftanometrie (LKA) ist eine Technik zur Messung der Geschwindigkeit von elektrisch leitfähigen Flüssigkeiten. Sie ist eine nicht-invasive Messtechnik, die besonders vorteilhaft für heiße, opake und aggressive Elektrolyte ist. Die LKA wurde für Salzwasser als Modellelektrolyt erfolgreich mit Dauermagnetanordnungen (DM) ohne magnetischen Rückschluss, aber mit gezielter Flussführung (Halbach-Array) und hochpräzisen Kraftmesssytemen (KMS) auf Basis der interferometrischen Messung der Auslenkung des Magnetsystems und der elektromagnetischen Kompensation der Auslenkung demonstriert. Um die LKA für schwach leitfähige Elektrolyte zu erweitern, ist eine Magnetfelderzeugung von > 1 T erforderlich. Ein Hochtemperatursupraleiter-Bulk (Bulk-HTS) kann ein Magnetfeld von mehreren Tesla erzeugen und somit die LKA-Leistung deutlich verbessern und die bisher genutzten DM ersetzen. Diese Arbeit zielt deshalb darauf ab, Bulk-HTS's in der LKA unter Berücksichtigung der kritischen Verbindungen zwischen der Funktionalität von Bulk-HTS's und dem KMS einzusetzen und ein LKA-System mit Bulk-HTS's zu entwerfen, herzustellen und zu testen. Die Ergebnisse wurden für die Entwicklung eines neuartigen LKA-System auf Basis eines Bulk-HTS als Magnetfeldquelle und einer Torsionswaage als Kraftmesssystem genutzt. Dieses System - Superconducting High-precision Lorentz Force Measurement System (Super-LOFOS) - wurde dann erfolgreich aufgebaut und getestet. Bei Kühlung mit flüssigem Stickstoff bzw. Helium werden auf der Stirnfläche des Super-LOFOS magnetische Flußdichten von B_T = 100 mT bzw. B_T = 1,2 T erzeugt. Damit erweitert die vorliegende Arbeit die Einsetzbarkeit der LKA für gering elektrisch leitende und langsam strömende Fluide auf ([sigma] &hahog; u) = 1-10) S s^-1, sowie macht hochpräzise Kraftmessungen bis 1 nN unter kryogenen Bedingungen möglich. Darüber hinaus stellt das entwickelte Messsystem Super-LOFOS einen tragbaren Magnetfeldgenerator dar, der für NMR- und MRT-Technologien, Drug Targeting, und magnetische Trennungsverfahren einsetzbar ist.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2020000083
Machts, René;
Wirkung von starken impulsförmigen Strömen und Magnetfeldern auf den menschlichen Kopf. - Ilmenau : Universitätsbibliothek, 2020. - 1 Online-Ressource (IX, 120 Blätter, Blatt IX-XXX)
Technische Universität Ilmenau, Dissertation 2020

Eine impulsförmige Blitzentladung erreicht Ströme von 200 kA und mehr. Ein direkter Blitzeinschlag in den menschlichen Kopf kann mechanische und thermische sowie neurologische Schädigungen verursachen. Die Wirkung eines indirekten Blitzschlages und des resultierenden impulsförmigen Magnetfeldes auf den menschlichen Körper ist weitestgehend unbekannt. Weiterhin wird angenommen, dass die Wahrscheinlichkeit einen Blitzschlag zu überleben bei 70 % - 90 % liegt. Jedoch sind die Ursachen der biologischen und physikalischen Wirkmechanismen nicht umfassend geklärt. Das Ziel der vorliegenden Arbeit war es eine Methodik zu entwickeln, um die Stromverteilung während eines nachgebildeten direkten Blitzeinschlages sowie die elektrische Feldstärkeverteilung während eines indirekten Blitzeinschlages in physikalischen Kopfphantomen zu ermitteln. Die Kopfphantome bildeten die geometrischen und dielektrischen Eigenschaften der Kopfhaut, des Neurocraniums sowie des intrakraniellen Volumens (Hirn) des menschlichen Kopfes nach. Diese Kopfphantome wurden für die Analyse der Stromverteilung mit Spannungen und Strömen beaufschlagt, die bei Blitzentladungen zu erwarten sind. Die Integration eines Elektrodenarrays in das Hirn ermöglichte die Erfassung der Potentialverteilung sowie die Berechnung der elektrischen Feldstärke im Kopfphantom während eines indirekt applizierten Impulses. Simulationen erlaubten die Bildung weiterer Interpretationen. Die Experimente und Simulationen, die einen direkten Blitzeinschlag nachbildeten, zeigten, dass die Kopfhaut primär der Stromwirkung (70-92 %) exponiert war, gefolgt vom Hirn (3-28 %) und Neurocranium (1-9 %). Mit ausgebildetem Überschlagkanal floss der größte Anteil (82-99 %) des Stromes in diesem ab und die Kompartimente des Kopfphantomes waren geringer exponiert. In den Experimenten, die einen indirekten Blitzeinschlag nachbildeten, wurde eine Feldstärke von bis zu 10V/m im Hirn ermittelt. Vier Schutzmechanismen erklären, wieso eine Person einen direkten Blitzschlag überleben kann. (1) Der Überschlagkanal wurde als der wichtigste Schutzmechanismus identifiziert und erstmalig verifiziert. Als weitere Schutzmechanismen wurden (2) die isolierende Wirkung des Neurocraniums und (3) die Ableitfähigkeit der cerebrospinalen Flüssigkeit ermittelt. (4) Die Hirnregionen, die mit Vitalfunktionen assoziiert werden, sind im Falle des Überschlags durch Stromamplituden exponiert, die mit medizinischen Anwendungen vergleichbar sind. Die mögliche Schädigung durch einen indirekten Blitzschlag wurde identifiziert.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2020000079
Kruse, Adrian;
Techniken der Untersuchung und Aufklärung von Straßenverkehrsunfällen mit Wild. - Ilmenau : Universitätsverlag Ilmenau, 2020. - 1 Online-Ressource (XI, 179 Seiten). - (Berichte aus der Biomechatronik ; Band 16)
Technische Universität Ilmenau, Dissertation 2020

Bei reklamiertem Wildschaden am Automobil kann die Aufklärung, ob es sich tatsächlich um einen Wildunfall gehandelt hat, nur interdisziplinär erfolgen. Allein die Untersuchung der Haare oder einer Blutspur genügt nicht für eine sichere Aussage, ob ein Wildunfall stattgefunden hat. Gleichermaßen entscheidend sind das Schadenbild am Fahrzeug, die Spuren am Unfallort sowie die Einlassungen zum Unfallhergang. Zur Sicherung und Auswertung dieser Beweise gibt es bis heute kein standardisiertes technisches Procedere. Dieses auf wissenschaftlicher Grundlage gerichtssicher zu erarbeiten war die zentrale Zielsetzung dieser Arbeit. Am Fahrzeug verbleiben in den meisten Fällen als Anhaftungen nur wenige Haare und mitunter auch Blut. Diese sind die Beweismittel, welche zur Untersuchung und Bestimmung der Tierart genutzt werden können. Blutspuren am Fahrzeug werden bisher selten gesichert. Dabei lässt sich angetrocknetes Blut am Fahrzeug nach Abkratzen mit Hilfe eines scharfen Gegenstandes wie z.B. einer Rasierklinge in einer Folientüte einfach sichern. Noch besser ist die Sicherung der Blutspur mit einem DNA-freien Wattestäbchen. Die Haare sollten nicht mit Klebefolien gesichert werden. Zur Untersuchung müssten die Haare später vom Kleber getrennt werden, was mitunter nicht zerstörungsfrei gelingt. Weiterhin ginge das Haar bei längerer Anhaftung mit dem Kleber eine Verbindung ein. Eine Kontaminierung mit dem Klebstoff der Klebefolie könnte nicht ausgeschlossen werden. Besser ist es, die Spuren in Pergamintüten zu sichern. Die Haaruntersuchung zur Feststellung der Tierart und der Elementverteilung im Haar erfordert eine systematische Vorgehensweise. Dabei sind zur Reproduzierbarkeit der Ergebnisse zuerst die zerstörungsfreien Methoden anzuwenden. Die Beobachtungen sollten im Bild dokumentiert werden. Als Erstes erfolgt die makroskopische Darstellung zur Dokumentation von Haarlänge und Farbgebung. Danach sollte eine Voruntersuchung mit der Lupe erfolgen, um die Lage von Wurzel und Spitze zu ermitteln. Nicht immer liegen zur Untersuchung vollständige Haare vor. Unter dem Mikroskop mit Kamera erfolgt anschließend über die definierten Haarabschnitte die Dokumentation. In einigen Fällen lässt sich bereits nach dieser Untersuchung durch die Betrachtung der Medulla die Tierart feststellen. Im Rasterelektronenmikroskop lässt sich die äußere Rindenschicht des Haares aufgrund der größeren Schärfentiefe deutlich darstellen. Diese gibt weitere Anhaltspunkte zur Tierartbestimmung. Immer sollte eine weitergehende Untersuchung zur Bestimmung der Elemente im Haar durchgeführt werden. Diese kann in Kombination mit im Rasterelektronenmikroskop integrierten oder separaten Geräten erfolgen. Zur Feststellung, welche chemischen Elemente im Haar vorkommen, und wie sich diese in Haaren von Tieren in der Natur zu behandelten Haaren unterscheiden, wurde mit dem im Rasterelektronenmikroskop integrierten EDRS die Messung der Elementmengen durchgeführt. Bei den Haaren handelt es sich um inhomogene Proben. Durch die Messung an verschiedenen Abschnitten mehrerer Haare konnten Unterschiede zwischen manipulierten und nicht manipulierten Haaren aufgezeigt werden. Die Messungen zu den Elementen wurden in einer Datenbank zusammengefasst, um einen schnellen Abgleich der Ergebnisse zu ermöglichen. Bei Verfügbarkeit ausreichender Mengen an Haarmaterial oder gesicherter Blutspur kann die Tierart mit Hilfe der DNA-Analyse ermittelt werden. Bei dieser Methode kommt es allerdings zur vollständigen Vernichtung der Beweismittel, da die Haare zur DNA-Gewinnung aufgelöst werden. Die Schäden an den Fahrzeugen sind bei einem Wildunfall von mehreren Faktoren abhängig. Unterschiede ergeben sich durch die Karosserieform und die Art des Fahrzeuges, die Relativgeschwindigkeit, die Größe und Masse des Tieres sowie die Anstoßkonstellation. Zum Abgleich, ob ein Schadenbild am Fahrzeug einem Tier zugeordnet werden kann, wurden Lichtbilder von mit Tieren kollidierten Fahrzeugen gesammelt. Die Spuren an den Fahrzeugen wurden ausgewertet, soweit es sich um gesicherte Wildunfälle handelte. Damit lässt sich nach der Feststellung der Tierart anhand der Antragspuren das Schadenbild abgleichen. Die wesentlichen Bilder und technischen Daten zum Fahrzeug wurden in einer eigens dafür erstellten Datenbank gesammelt. Teilweise konnten die Fahrzeuglenker befragt werden, welche dann weitere (subjektive) Angaben zum Unfallhergang gaben. Wichtig für die Beurteilung sind die Lichtbilder mit den Beschädigungen und der Spurenlage. Da selten alle Information zum Wildunfall in der Datensammlung vorliegt, wurde eine einfache Differenzierung zur Qualität mit einem "Fünfsternesystem" erarbeitet. Die Vergleichsfälle in der Datenbank kommen aus drei Datenquellen. Diese sind (1) nachgewiesene Wildunfälle aus Gutachten, (2) am Unfallort aufgenommene Wildunfälle und (3) Schadenbilder aus selbstdurchgeführten Versuchen.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2020000056
Stegner, Johannes;
Multiphysikalischer Entwurf hybrid-integrierter MEMS-Oszillatoren auf Silizium-LTCC-Substraten. - Ilmenau : Universitätsbibliothek, 2020. - 1 Online-Ressource (xvi, 155 Seiten)
Technische Universität Ilmenau, Dissertation 2020

Die vorliegende Dissertation befasst sich mit dem Entwurf und der Analyse von MEMS-Oszillatoren auf dem so genannten SiCer-Verbundsubstrat. Dafür wird eine Methodik erarbeitet, die den Entwurf von Mikroelektronik und Mikroelektromechanik vereint. Diese Methodik basiert auf einem analytischen Entwurfsmodell zur Synthese von Resonatorstrukturen über die elektrischen Spezifikation. In der Arbeit wird weiterhin der Entwurf zweier aufeinander aufbauender Oszillatortypen beschrieben, einem Festfrequenzoszillator für Frequenzen bis zu 600 MHz sowie einem Mehrfrequenzoszillator für Ausgangsfrequenzen im oberen MHz- bis unteren GHz-Bereich und der Bereitstellung von Referenzfrequenzen von etwa 10 MHz. Beide Typen von Oszillatoren werden in verschiedenen Varianten implementiert und auf eine möglichst kompakte Baugröße und geringes Phasenrauschen hin optimiert. Die Resultate aller Präparationen heben sich vom Stand der Technik ab, sowohl in der Aufbautechnik als auch in der Oszillationsfrequenz und im Phasenrauschen. Weiterhin wird in der vorliegenden Arbeit die Thematik der Temperaturabhängigkeit von MEMS-Resonatoren und -Oszillatoren betrachtet, welche im Vergleich zur thermischen Drift kommerziell verfügbarer Quarz-Resonatoren und -Oszillatoren höher ausfällt. Dazu wird das analytische Entwurfsmodell für MEMS-Resonatoren derart modifiziert, dass sich die geometrischen Abmessungen und Materialparameter in Abhängigkeit der Umgebungstemperatur verändern. Messungen an Resonatoren verschiedener Geometrien werden im Anschluss genutzt, um die analytischen Berechnungen zu verifizieren. Die messtechnisch ermittelte Temperaturabhängigkeit der Resonanzfrequenz liegt dabei zwischen -26 ppm/K und -20 ppm/K, was dem analytisch modellierten Temperaturkoeffizienten von -28,1 ppm/K sehr nahe kommt. Auf Basis von in der Literatur veröffentlichten Temperaturkompensationsmethoden wird das analytische Modell um eine Lage Siliziumdioxid erweitert, die einen positiven Temperaturkoeffizienten aufweist und so die Temperaturabhängigkeit kompensiert.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2020000030
Nägelein, Andreas;
Ladungsträgertransport in Nanodrahtstrulturen. - Ilmenau : Universitätsbibliothek, 2020. - 1 Online-Ressource (xii, 154 Seiten)
Technische Universität Ilmenau, Dissertation 2020

Die Integration von III-V-Halbleitern mit der etablierten Silizium-Technologie hat einen hohen Stellenwert bei der Weiterentwicklung vieler opto-elektronischen Bauelemente. Da hierbei Materialien mit unterschiedlichen Kristallstrukturen und Gitterparameter kombiniert werden müssen, entstehen Kristalldefekte, welche die Leistung und Effizienz dieser Bauteile beeinträchtigen. Unter Verwendung von Nanodrahtstrukturen, in denen mechanische Spannungen sehr effizient abgebaut werden können, ist es möglich, die Defektdichte zu reduzieren. Zudem kann von der Nanodrahtgeometrie, mit ihren einzigartigen Eigenschaften, profitiert werden. In dieser Arbeit wird ein ausgefeiltes Multi-Spitzen Rastertunnelmikroskop (MT-STM) eingesetzt, um den Ladungsträgertransport in freistehenden Nanodrahtstrukturen eingehend zu untersuchen. Das Ziel dieser Dissertation ist es, ein detailliertes Verständnis über den Dotierstoffeinbau, die Leitungskanäle bei verschieden starker Dotierung sowie die Funktion ladungstrennender Kontakte in Nanodrähten zu entwickeln. In einem ersten Schritt werden die Ergebnisse des MT-STMs mit denen konventioneller Transferlängenmessung verglichen und bewertet. Die gute Übereinstimmung der ermittelten spezifischen Leitfähigkeit und Dotierstoffkonzentration, die hohe Ortsauflösung und die wenigen Prozessschritte bestätigen die Überlegenheit des MT-STMs gegenüber konventionellen Methoden. Die Vermessung verschieden dotierter Nanodrähte ermöglicht es den Dotierstoffeinbau im Detail zu untersuchen. Der Vergleich der Leitfähigkeiten dieser Drähte unmittelbar nach dem UHV-Transfer mit denen nach Oxidation an Luft, ermöglicht zudem die Evaluation der Auswirkungen von Oberflächenterminierungen auf den Ladungsträgertransport. Die für opto-elektronische Anwendung notwendigen ladungstrennenden Kontakte werden in axialer sowie radialer Ausführung untersucht. Hierbei ist die Ermittlung der exakten Dotierstoffprofile mit höchster räumlicher Auflösung besonders wichtig, da abrupte Halbleiterkontakte beim sogenannten vapor-liquid-solid Wachstum kaum realisierbar sind. Die vorliegende Arbeit schafft die Voraussetzungen für ein detailliertes Verständnis des Ladungsträgertransports und zur präzisen Ermittlung von Dotierprofilen in Nanodrähten, wodurch die Grundlage für die Verbesserung von Nanodraht-Bauelemente geschaffen wird.



https://www.db-thueringen.de/receive/dbt_mods_00040691