Konferenzbeiträge ab 2018

Anzahl der Treffer: 1355
Erstellt: Wed, 17 Jul 2024 23:13:10 +0200 in 0.0707 sec


Eichler, Stefan; Arnim, Mareike; Brätz, Oliver; Hildebrand, Jörg; Gericke, Andreas; Bergmann, Jean Pierre; Kuhlmann, Ulrike; Henkel, Knuth-Michael
Heat management and tensile strength of 3 mm mixed and matched connections of butt joints of S355J2+N, S460MC and S700MC. - In: ce/papers, ISSN 2509-7075, Bd. 6 (2023), 3/4, S. 1476-1482

High-strength structural steels are beneficial in terms of the sustainability of constructions due to the possible reduction of weight and overall material needs. Nevertheless, high-strength steels have a smaller processing parameter range in regarding the specific heat input and resulting cooling rate. Especially the cooling time t8/5 characterizing the time span to cool down from 800 to 500 ˚C is an important indicator. Single layer butt-welded gas metal arc welding (GMAW) connections of 3 mm plates between normal strength (S355J2+N, S460MC) and high-strength steels (S700MC) as well as matched connections (S460MC, S700MC) are carried out. Hereby, the influence of the energy input, melting rate, joint preparation, filler metal (matching and undermatching) and backing methods are observed. Spatially resolved IR-thermal observation shows variations within the welds of up to 50 % in the cooling time t8/5 depending on those parameters. These fluctuations lead to significant changes of the microstructure within the melting and heat-affected zone. UCI hardness mappings show the softening and microstructural change within these zones. Those soft zones can be the region of failure for butt welded connections as shown by transverse tensile tests with spatially resolved optical strain measurements. The results obtained can be used to define more precise welding procedures of these types of connections and also are used to develop design rules for mixed connections made of normal strength and high-strength steel.



https://doi.org/10.1002/cepa.2265
Karcher, Christian;
Beitrag des Grundlagenfachs Technische Thermodynamik zur Thematik Technische Bildung für eine nachhaltige Entwicklung. - In: Technische Bildung für eine Nachhaltige Entwicklung, (2023), S. 59-68

Die Technische Thermodynamik versteht sich heutzutage als eine allgemeine Energielehre. In vielen Ingenieurstudiengängen gilt sie als Grundlagenfach, dem die Aufgabe zukommt, den Studierenden die vielfältigen Umwandlungsmöglichkeiten von Energieformen aufzuzeigen. Des Weiteren werden die Studierenden über die Einschränkungen bei den Umwandlungsprozessen unterrichtet, anhand derer sie die Effizienz der Prozesse beurteilen können. Die Aussagen der Thermodynamik sind methodisch in vier Hauptsätzen zusammengefasst. Trotz dieses klaren inhaltlichen Aufbaus ist die Technische Thermodynamik bei vielen Studierenden ein eher unbeliebtes Fach, wohl, weil die sichere Beherrschung abstrakter, fachspezifischer Größen wie Entropie und Exergie notwendig ist. Der vorliegende Beitrag setzt sich zum Ziel zu zeigen, dass die Kernaussagen der Thermodynamik mit dem Gedanken der Nachhaltigkeit verknüpft sind. Dadurch ist fundiertes Fachwissen in dieser Disziplin von zentraler Bedeutung für die Umsetzung nachhaltiger Ansätze in der Anwendung. Alle künftigen technischen Lösungsvorschläge im Rahmen der viel zitierten Energiewende kommen an dem grundlegenden Verständnis der thermodynamischen Zusammenhänge nicht vorbei. Weiterhin wird anhand von Praxisbeispielen analysiert, welche Herausforderungen sich daraus für die Lehre in der universitären Ingenieurausbildung ergeben. Neben den klassischen Lehrinstrumenten wie Vorlesung und Seminarübung sind auch Erfahrungssammlung durch Laborversuche und Exkursionen wichtige Schritte im Lernprozess.



Selzer, Silas A.; Bauer, Fabian; Bohm, Sebastian; Runge, Erich; Bretschneider, Peter
Physics-guided machine learning techniques for improving temperature calculations of high-voltage transmission lines. - In: Die Energiewende beschleunigen, (2023), S. 353-360

The calculation of the temperature of high-voltage transmission lines is usually done by the commercially used standard models, the CIGRE Standard No. 601 and the IEEE Standard No. 738. These turn out to be prone to errors in application. Based on data analysis, new models based on machine learning techniques and their combination with physics-based models, called physics-guided machine learning techniques, were developed and compared with the results of the established physical models and measurement results. The improved models achieve a reduction of the mean absolute estimation error as well as a significant reduction of the values that deviate more than 5 K from the measured conductor temperature. Also, the mean underestimation of the conductor temperature was changed into an applicationtechnically unproblematic overestimation by the transition from the best standard to the best data-scientific model. The optimization of the models could be achieved by eliminating the incorrect determination of the physical parameters, a compensation of the conservative estimation of the physical effects as well as the consideration of the neglected thermal components of the heat balance. The investigations are based on measured data of the conductor temperature and electrical quantities from the grid area of 50Hertz Transmission GmbH.



Müller, Ingmar; Gutschwager, Berndt; Adibekyan, Albert; Kononogova, Elena; Hemeling, Christoph F.; Monte, Christian
Improved calibration capabilities for infrared radiation thermometers and thermal imagers in the range from -60 ˚C to 960 ˚C at the Physikalisch-Technische Bundesanstalt. - In: SMSI 2023 Conference - Sensor and Measurement Science International, (2023), S. 398-399

At the Physikalisch-Technische Bundesanstalt (PTB), the national metrology institute of Germany, the calibration facility for thermal imager, infrared calibrators, and radiation thermometers has been up-dated to improve the calibration service. An additional cesium-heatpipe blackbody was installed to close the temperature gap from 270 ˚C to 500 ˚C and a new sodium-heatpipe blackbody was taken into operation. In addition, the precision of the positioning of the devices under test was improved and the new blackbodies were characterized and tested. The calibration facility now marks the state-of-the-art in terms of achievable uncertainties and automatization.



https://doi.org/10.5162/SMSI2023/P61
Gourishetti, Saichand; Chauhan, Jaydeep; Grollmisch, Sascha; Rohe, Maximilian; Sennewald, Martin; Hildebrand, Jörg; Bergmann, Jean Pierre
Arc welding process monitoring using neural networks and audio signal analysis. - In: SMSI 2023 Conference - Sensor and Measurement Science International, (2023), S. 249-250

This paper investigates the potential of airborne sound analysis in the human hearing range for automatic defect classification in the arc welding process. We propose a novel sensor setup using microphones and perform several recording sessions under different process conditions. The proposed quality monitoring method using convolutional neural networks achieves 80.5% accuracy in detecting deviations in the arc welding process. This confirms the suitability of airborne analysis and leaves room for improvement in future work.



https://doi.org/10.5162/SMSI2023/D7.2
Keck, Lorenz; Seifert, Frank; Schlamminger, Stephan; Newell, David; Theska, René; Haddad, Darine
A Kibble balance as part of a quantum measurement institute in one room at NIST. - In: SMSI 2023 Conference - Sensor and Measurement Science International, (2023), S. 125-126

The new Kibble balance at the National Institute of Standards and Technology (NIST) is part of the Quantum Electro-Mechanical Metrology Suite (QEMMS). Two quantum standards are incorporated directly in the electrical circuit of the Kibble balance for the realization of the unit of mass. This eliminates the need for external calibration in the Kibble balance experiment. The targeted uncertainty is 2 μg on a 100 g mass and a range from 10 g to 200 g will be covered. We introduce the measurement concept of the QEMMS, show the current state of development and publish first measurements proving the performance of the newly designed balance mechanics.



https://doi.org/10.5162/SMSI2023/B6.1
Shmagun, Vitalii; Kissinger, Thomas; Fröhlich, Thomas
Fiber-interferometric sensor for velocity measurement in the Planck-Balance. - In: SMSI 2023 Conference - Sensor and Measurement Science International, (2023), S. 127-128

This work describes the use of a compact fiber-interferometric sensor for velocity measurements for the Kibble balance method. Our fiber-interferometric sensor was compared within a Planck-balance setup with a commercial reference interferometer. Results show that the fiber-interferometric sensor is capable of high accuracy velocity measurement comparable with the reference interferometer. High performance and compactness of the sensor head allow it to be integrated into small-size systems, where the use of the conventional interferometer systems is limited or not possible.



https://doi.org/10.5162/SMSI2023/B6.2
Konrad, Johannes; Rothleitner, Christian; Kloß, Jonas; Fröhlich, Thomas
A vertically positionable permanent magnet system for the Planck-Balance. - In: SMSI 2023 Conference - Sensor and Measurement Science International, (2023), S. 131-132

The Planck-Balance is a compact version of a Kibble balance, allowing a direct measurement of mass by means of electromagnetic force compensation (EMFC). This means that the effects of deformation have to be considered. The vertical position adjustment of the coil, which is discussed in this article, can reduce many errors, such as errors due to deformations during weighing, which lead to a non-proportional correlation between the current in the compensation coil and the compensated mass. In our setup, these errors can be up to about 8 ppm in the maximum case. In addition, there are other problems such as higher order harmonics in the velocity mode, which can be reduced.



https://doi.org/10.5162/SMSI2023/B6.4
Kissinger, Thomas;
Multiplexing interferometers to provide novel capabilities for nanometrology. - In: SMSI 2023 Conference - Sensor and Measurement Science International, (2023), S. 239-240

Multiplexing interferometers within a single beam, based on their optical path difference, using laser wavelength-modulated signal processing techniques such as the range-resolved interferometry method, allows for interesting new capabilities in precision interferometry. For example, these include single-beam differential interferometry or position encoders with multiple degrees-of-freedoms using only a single fibre-coupled access port.



https://doi.org/10.5162/SMSI2023/D6.1
Ortlepp, Ingo;
Current advances in 3D tip- and laser-based nanofabrication in extended working areas. - In: SMSI 2023 Conference - Sensor and Measurement Science International, (2023), S. 245-246

Nanotechnology is affecting almost all areas of life, from semiconductor industry to optics, medicine and agriculture. Classical methods for sensing, measuring and fabricating on the nanoscale are faced with new challenges: features are getting smaller and the variety of structures and materials is increasing. Thus, many new techniques are developed in this field. Research at the Technische Universität Ilmenau aims to support transferring these new technologies to industrial scale for future application. The focus is on tip- and laser-based processes together with devices for nanometer positioning.



https://doi.org/10.5162/SMSI2023/D6.4