Konferenzbeiträge ab 2018

Anzahl der Treffer: 1355
Erstellt: Tue, 16 Jul 2024 23:20:01 +0200 in 0.0936 sec


Wöste, Andreas; Hergert, Germann; Silies, Martin; Wang, Dong; Groß, Petra; Lienau, Christoph
Photon-induced near-field interaction in ultrafast point-projection electron microscopy. - In: CLEO, (2023), JTu2A.133, insges. 2 S.

We report the first study of ultrafast, slow (<100 eV) free electron wavepackets with optical near fields. This interaction is probed in a point-projection-microscope with 50fs temporal resolution using strongly localized fields around a nano-antenna.



https://ieeexplore.ieee.org/document/10258768
¸Cakiro&bovko;glu, Ozan; Pérez, Eduardo; Römer, Florian; Schiffner, Martin Friedrich
Autoencoder-based learning of transmission parameters in fast pulse-echo ultrasound imaging employing sparse recovery. - In: 2023 IEEE 9th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), (2023), S. 516-520

There is recently a notable rise in the exploration of pulse-echo ultrasound image reconstruction techniques that address the inverse problem employing sparse signal and rely on a single measurement cycle. Nevertheless, these techniques continue to pose significant challenges with regard to accuracy of estimations. Previous studies have endeavored to decrease the correlation between received samples in each transducer array in order to enhance accuracy of sparsely approximated solutions to inverse problems. In this paper, our objective is to learn the transmission parameters within a parametric measurement matrix by employing an autoencoder, which encodes sparse spatial data with a parametric measurement matrix and subsequently decodes it using Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). Outcomes exhibit superior performance in comparison to both state-of-art random selection of the parameters and conventional plane wave imaging (PWI) scenarios in terms of reconstruction accuracy.



https://doi.org/10.1109/CAMSAP58249.2023.10403443
Lenk, Claudia; Ivanov, Tzvetan; Durstewitz, Steve; Ved, Kalpan; Gubbi, Vishal; Ziegler, Martin
An adaptive acoustic neuromorphic auditory system. - In: 2023 IEEE Nanotechnology Materials and Devices Conference (NMDC), (2023), S. 210-211

The human auditory system has remarkable perceptual properties: a dynamic range of more than 120 dB sound pressure level (SPL), a frequency resolution of 0.1%, an intensity discrimination of only 1 dB, and can adapt hearing at low sound levels and in noisy environments. The neuromorphic auditory system presented here emulates the functionalities enabling these properties within a dynamic microelectromechanical system-based (MEMS) cochlea. Based on this system, the paper discusses basic design aspects of neuromorphic systems, i.e., systems that allow to perceive their environment and thus to react to changing environments adequately and in real time.



https://doi.org/10.1109/NMDC57951.2023.10344205
Rogge, Norbert; Dannberg, Oliver; Kühnel, Michael; Fröhlich, Thomas
A novel EMFC tiltmeter with extended measurement range. - In: 24th IMEKO TC3 International Conference on Measurement of Force, Mass and Torque 2022, (2023), S. 252-257

This work presents a new tiltmeter that utilises the principle of electromagnetic force compensation (EMFC) in order to increase its measurement range and measurement dynamics compared to an uncompensated pendulum tiltmeter. The development included investigations on the design of the pendulum mechanics, the position sensor and the actuators. With the chosen parameters a resolution of 1 μrad in a measurement range of 20 mrad can be achieved currently on a short-term timescale.



Cherkasova, Valeriya; Fröhlich, Thomas
Capacitive calibration capabilities in an EMFC balance. - In: 24th IMEKO TC3 International Conference on Measurement of Force, Mass and Torque 2022, (2023), S. 236-241

The article describes the possibilities of calibrating the force constant in an electromagnetic force compensation (EMFC) load cell using the electrostatic force compensation principle. The static and dynamic principles of calibration of the Kibble balance for the electrostatic force constant, as well as calibration by means of compensation of the electrostatic force by the electromagnetic force, are considered. The combination of the two compensation principles in the load cell allows the measurement of forces in the range of 20 pN to 2.2 mN and ensures traceability to national standards. The relative uncertainty in the measurement of forces of about 100 nN is estimated to be about 0.001.



Pabst, Markus; Fröhlich, Thomas
Centre of gravity measuring device. - In: 24th IMEKO TC3 International Conference on Measurement of Force, Mass and Torque 2022, (2023), S. 138-143

This paper describes a new method to measure the height of the centre of gravity of high-sensitive mass artefacts. A measuring device is presented and tested with mass samples of various shapes and densities. The results of the measurements are compared to the geometrical estimated heights of the centre of gravity and further developments of the new instrument are presented.



Stehr, Uwe; Hasnain, Syed N.; Bieske, Björn; Brachvogel, Marius; Meurer, Michael; Hein, Matthias
LO and calibration signal distribution in a multi-antenna satellite navigation receiver. - In: Engineering proceedings, ISSN 2673-4591, Bd. 54 (2023), 1, 23, S. 1-10

Due to the low signal power of global navigation satellite signals, the receivers are prone to radio frequency interference. Employing multi-antenna arrays is one method to mitigate such effects, by incorporating spatial processing techniques. The large size of the uniform rectangular arrays prevents their use in applications where installation space is limited. Therefore, we proposed a new approach, namely to split one full array into a number of smaller, spatially distributed, sub-arrays to reduce their size and exploit available installation spaces. This concept challenges the distribution of the local oscillator and calibration signals to the respective sub-arrays. This paper compares qualitatively different design concepts for a satellite navigation receiver with two two-element sub-arrays, installed multiple wavelengths apart from each other, in support of establishing an optimal choice for our intended applications in the automotive sector in terms of electrical performance and required hardware and software efforts. In general, weighing the pros and cons of the different concepts, as discussed in the paper, will assist in optimizing the system design approach for a specific application.



https://doi.org/10.3390/ENC2023-15447
Wang, Han; Pérez, Eduardo; Römer, Florian
Data-driven subsampling matrices design for phased array ultrasound nondestructive testing. - In: IEEE IUS 2023, International Ultrasonics Symposium, Palais des congrès de Montréal, September 3-8, 2023, (2023), insges. 4 S.

By subsampling optimally in the spatial and temporal domains, ultrasound imaging can achieve high performance, while also accelerating data acquisition and reducing storage requirements. We study the design of experiment problem that attempts to find an optimal choice of the subsampling patterns, leading to a non-convex combinatorial optimization problem. Recently, deep learning was shown to provide a feasible approach for solving such problems efficiently by virtue of the softmax function as a differentiable approximation of the one-hot encoded subsampling vectors. We incorporate softmax neural networks into information theory-based and task-based algorithms, respectively, to design optimal subsampling matrices in Full Matrix Capture (FMC) measurements predicated on compressed sensing theory.



https://doi.org/10.1109/IUS51837.2023.10308257
Wang, Han; Pérez, Eduardo; Römer, Florian
Deep learning-based optimal spatial subsampling in ultrasound nondestructive testing. - In: 31st European Signal Processing Conference (EUSIPCO 2024), (2023), S. 1863-1867

Traditional ultrasound synthetic aperture imaging relies on closely spaced measurement positions, where the pitch size is smaller than half the ultrasound wavelength. While this approach achieves high-quality images, it necessitates the storage of large data sets and an extended measurement time. To address these issues, there is a burgeoning interest in exploring effective subsampling techniques. Recently, Deep Probabilistic Subsampling (DPS) has emerged as a feasible approach for designing selection matrices for multi-channel systems. In this paper, we address spatial subsampling in single-channel ultrasound imaging for Nondestructive Testing (NDT) applications. To accomplish a model-based data-driven spatial subsampling approach within the DPS framework that allows for the optimal selection of sensing positions on a discretized grid, it is crucial to build an adequate signal model and design an adapted network architecture with a reasonable cost function. The reconstructed image quality is then evaluated through simulations, showing that the presented subsampling pattern approaches the performance of fully sampling and substantially outperforms uniformly spatial subsampling in terms of signal recovery quality.



https://doi.org/10.23919/EUSIPCO58844.2023.10289868
Semper, Sebastian; Pérez, Eduardo; Landmann, Markus; Thomä, Reiner
Misspecification under the narrowband assumption: a Cramér-Rao bound perspective. - In: 31st European Signal Processing Conference (EUSIPCO 2024), (2023), S. 1524-1528

To efficiently extract estimates about the propagation behavior of electromagnetic waves in a radio environment it is common to invoke the narrowband-assumption. It essentially states that the relative bandwidth of the measurement system is so low that the frequency response of a single propagation path only depends on it Time-of-Flight and the response of the measurement device can be calibrated independently of the measured channel. Recent advances into higher relative bandwidths and antenna arrays with larger spatial aperture render this assumption less likely to be satisfied, which leads to a model mismatch during estimation. In this case estimates are inherently biased and have a special statistical behavior. This behavior can be captured by the so-called Misspecified Cramér-Rao Bound, which formulates a lower bound for the variance of estimates that are biased due to model mismatch. We analyze this bound in contrast to the traditional Cramér-Rao Bound and show the shortcomings in the setting of joint ToF-DoA estimation in the mmWave spectrum. The conducted numerical studies also show that planar array geometries inherently suffer from violation of the narrowband assumption irrespective of the individual elements' frequency response, whereas circular structures show it to a lesser degree.



https://doi.org/10.23919/EUSIPCO58844.2023.10289949