Zeitschriftenaufsätze ab 2018

Anzahl der Treffer: 1691
Erstellt: Tue, 16 Jul 2024 23:19:38 +0200 in 0.0675 sec


Baumer, Christoph; Schmidt, Udo; Bund, Andreas
Investigating the suitability of various silver(I) complexes for use in a cyanide-free silver electrolyte. - In: Coatings, ISSN 2079-6412, Bd. 14 (2024), 5, 618, S. 1-16

The suitability of various nitrogen, sulfur, oxygen, and phosphorus compounds as complexing agents in a silver electrolyte was examined by using potentiometric titration under practical conditions. The setup consisted of three electrodes to measure the pH and the activity of the silver ions simultaneously. Different ratios of silver to complexing agent from 1:10 to 1:1 at a constant ionic strength of 0.2 mol/L were investigated. The type of the complexes and their corresponding critical stability constants were evaluated by fitting the measured data using a self-developed algorithm. The pH and Nernst potential curve were calculated for the assumed complexes based on the law of mass action to find the best approximation. The correct definition of the occurring species is challenging and can lead to significant changes in the calculation of stability constants. For this reason, the measured silver potential curves were primarily used for the rating of the complexing agents. An evaluation of the measurements shows that the donor atom of the complexing agent and its ligand field strongly affected the stability and type of the complexes. Only a few complexing agents were found to be suitable for use in the cyanide-free silver electrolyte.



https://doi.org/10.3390/coatings14050618
Ilgaz, Fatih; Spetzler, Elizaveta; Wiegand, Patrick; Faupel, Franz; Rieger, Robert; McCord, Jeffrey; Spetzler, Benjamin
Miniaturized double-wing ∆E-effect magnetic field sensors. - In: Scientific reports, ISSN 2045-2322, Bd. 14 (2024), 11075, S. 1-12

Magnetoelastic micro-electromechanical systems (MEMS) are integral elements of sensors, actuators, and other devices utilizing magnetostriction for their functionality. Their sensitivity typically scales with the saturation magnetostriction and inversely with magnetic anisotropy. However, large saturation magnetostriction and small magnetic anisotropy make the magnetoelastic layer highly susceptible to minuscule anisotropic stress. It is inevitably introduced during the release of the mechanical structure during fabrication and severely impairs the device’s reproducibility, performance, and yield. To avoid the transfer of residual stress to the magnetic layer, we use a shadow mask deposition technology. It is combined with a free-free magnetoelectric microresonator design to minimize the influence of magnetic inhomogeneity on device performance. Magnetoelectric resonators are experimentally and theoretically analyzed regarding local stress anisotropy, magnetic anisotropy, and the ΔE-effect sensitivity in several resonance modes. The results demonstrate an exceptionally small device-to-device variation of the resonance frequency < 0.2% with large sensitivities comparable with macroscopic ΔE-effect magnetic field sensors. This development marks a promising step towards highly reproducible magnetoelastic devices and the feasibility of large-scale, integrated arrays.



https://doi.org/10.1038/s41598-024-59015-5
Rothe, Karl; Néel, Nicolas; Kröger, Jörg
Unveiling the nature of atomic defects in graphene on a metal surface. - In: Beilstein journal of nanotechnology, ISSN 2190-4286, Bd. 15 (2024), S. 416-425

Low-energy argon ion bombardment of graphene on Ir(111) induces atomic-scale defects at the surface. Using a scanning tunneling microscope, the two smallest defects appear as a depression without discernible interior structure suggesting the presence of vacancy sites in the graphene lattice. With an atomic force microscope, however, only one kind can be identified as a vacancy defect with four missing carbon atoms, while the other kind reveals an intact graphene sheet. Spatially resolved spectroscopy of the differential conductance and the measurement of total-force variations as a function of the lateral and vertical probe–defect distance corroborate the different character of the defects. The tendency of the vacancy defect to form a chemical bond with the microscope probe is reflected by the strongest attraction at the vacancy center as well as by hysteresis effects in force traces recorded for tip approach to and retraction from the Pauli repulsion range of vertical distances.



https://doi.org/10.3762/bjnano.15.37
Fröhlich, Thomas; Kissinger, Thomas; Manske, Eberhard
Process measurement technology and precision measurement technology :
Prozessmesstechnik und Präzisionsmesstechnik. - In: Technisches Messen, ISSN 2196-7113, Bd. 91 (2024), 5, S. 231-232
Editorial

https://doi.org/10.1515/teme-2024-0041
Tschumak, Alexej; Feldhoff, Frank; Klefenz, Frank
The switching and learning behavior of an octopus cell implemented on FPGA. - In: Mathematical biosciences and engineering, ISSN 1551-0018, Bd. 21 (2024), 4, S. 5762-5781

A dendrocentric backpropagation spike timing-dependent plasticity learning rule has been derived based on temporal logic for a single octopus neuron. It receives parallel spike trains and collectively adjusts its synaptic weights in the range [0, 1] during training. After the training phase, it spikes in reaction to event signaling input patterns in sensory streams. The learning and switching behavior of the octopus cell has been implemented in field-programmable gate array (FPGA) hardware. The application in an FPGA is described and the proof of concept for its application in hardware that was obtained by feeding it with spike cochleagrams is given; also, it is verified by performing a comparison with the pre-computed standard software simulation results.



https://doi.org/10.3934/mbe.2024254
Bohm, Sebastian; Phi, Hai Binh; Dittrich, Lars; Runge, Erich
Chip-integrated non-mechanical microfluidic pump driven by electrowetting on dielectrics. - In: Lab on a chip, ISSN 1473-0189, Bd. 24 (2024), 11, S. 2893-2905

A microfluidic pump is presented that generates its pumping action via the EWOD (electrowetting-on-dielectric) effect. The flow is generated by the periodic movement of liquid-vapor interfaces in a large number (≈10^6) of microcavities resulting in a volume change of approx. 0.5 pl per cavity per pump stroke. The total flow resulting from all microcavities adds up to a few hundred nanolitres per cycle. Passive, topologically optimized, non-mechanical Tesla valves are used to rectify the flow. As a result, the micropump operates without any moving components. The dimensioning, fabrication, and characterization process of the micropump are described. Device fabrication is done using conventional manufacturing processes from microsystems technology, enabling cost-effective mass production on wafer-level without additional assembly steps like piezo chip-level bonding, etc. This allows for direct integration into wafer-based microfluidic or lab-on-a-chip applications. Furthermore, first measurement results obtained with prototypes of the micropump are presented. The voltage- and frequency-dependent pump performance is determined. The measurements show that a continuous flow rate larger than 0.2 ml min^−1 can be achieved at a maximum pump pressure larger than 12 mbar.



https://doi.org/10.1039/D4LC00178H
Sayahkarajy, Mostafa; Witte, Hartmut; Faudzi, Ahmad Athif Mohd
Chorda dorsalis system as a paragon for soft medical robots to design echocardiography probes with a new SOM-based steering control. - In: Biomimetics, ISSN 2313-7673, Bd. 9 (2024), 4, 199, S. 1-22

Continuum robots play the role of end effectors in various surgical robots and endoscopic devices. While soft continuum robots (SCRs) have proven advantages such as safety and compliance, more research and development are required to enhance their capability for specific medical scenarios. This research aims at designing a soft robot, considering the concepts of geometric and kinematic similarities. The chosen application is a semi-invasive medical application known as transesophageal echocardiography (TEE). The feasibility of fabrication of a soft endoscopic device derived from the Chorda dorsalis paragon was shown empirically by producing a three-segment pneumatic SCR. The main novelties include bioinspired design, modeling, and a navigation control strategy presented as a novel algorithm to maintain a kinematic similarity between the soft robot and the rigid counterpart. The kinematic model was derived based on the method of transformation matrices, and an algorithm based on a self-organizing map (SOM) network was developed and applied to realize kinematic similarity. The simulation results indicate that the control method forces the soft robot tip to follow the path of the rigid probe within the prescribed distance error (5 mm). The solution provides a soft robot that can surrogate and succeed the traditional rigid counterpart owing to size, workspace, and kinematics.



https://doi.org/10.3390/biomimetics9040199
Noßmann, Bastian; Yu, Zuodong; Das, Ankur; Schulte, Stefan; Néel, Nicolas; Wu, Chien-Te; Kirchner, Stefan; Kröger, Jörg
Yu-Shiba-Rusinov states induced by single Fe atoms on reconstructed compound superconductor V3Si. - In: Surface science, ISSN 1879-2758, Bd. 746 (2024), 122504, S. 1-10

Reconstructed surfaces of the A15-compound superconductor V3Si(100) that are possibly induced by the segregation of bulk impurities serve as platforms to study the dependence of Yu-Shiba-Rusinov states induced by a single Fe atom on the adsorption site. Their number, energy and electron-hole asymmetry vary strongly with the atomic environment of the Fe atom. These variations are indicative of different Fe d-orbitals being active in the site-dependent exchange coupling with the substrate Cooper pairs. Spatially resolved spectroscopy gives rise to a short decay length of the Yu-Shiba-Rusinov states and thereby suggests the three-dimensional character of the scattering process underlying the bound states.



https://doi.org/10.1016/j.susc.2024.122504
Daneshpazhoonejad, Farshad; Glaser, Marcus; Hildebrand, Jörg; Bergmann, Jean Pierre; Jung, Anne
Experimental-assisted approach to develop a numerical model for simulating the reaction propagation in reactive multilayers. - In: Advanced engineering materials, ISSN 1527-2648, Bd. 26 (2024), 2302179, S. 1-11
Accepted Articles : Accepted, unedited articles published online and citable. The final edited and typeset version of record will appear in the future.

One outstanding feature of self-propagating reactions is their ability to release heat of reaction over both temporal and spatial scales, enabling the sustained progression of the reaction after a local ignition. They propagate in the form of a continuous reaction front through the mixture of the starting materials. Previous research on reactive materials has predominantly focused on unraveling the microstructure property relationships influencing released energy in reacting multilayers. This involved considering coupled differential equations, including the heat conduction equation and Fick's law. In this study, the introduction of a purely thermal numerical macroscale model is made, incorporating two states of material properties that differentiate between the thermal characteristics before and after phase formation. The homogenization of material properties before the phase formation is accomplished through the consideration of directional-temperature-dependent thermal conductivity and temperature-dependent-specific heat capacity. The energy-release function is derived using experimental data for the reaction velocity depending on bilayer thickness. This model allows for the exploration of reaction motion and temperature profiles, achieving qualitative conformity with experimental measurements for freestanding foil, and necessitating reasonable computational effort.



https://doi.org/10.1002/adem.202302179
Iliasov, Aleksandr I.; Matsukatova, Anna N.; Emelyanov, Andrey V.; Slepov, Pavel S.; Nikiruy, Kristina; Rylkov, Vladimir V.
Adapted MLP-Mixer network based on crossbar arrays of fast and multilevel switching (Co-Fe-B)x(LiNbO3)100-x nanocomposite memristors. - In: Nanoscale horizons, ISSN 2055-6764, Bd. 9 (2024), 2, S. 238-247

MLP-Mixer based on multilayer perceptrons (MLPs) is a novel architecture of a neuromorphic computing system (NCS) introduced for image classification tasks without convolutional layers. Its software realization demonstrates high classification accuracy, although the number of trainable weights is relatively low. One more promising way of improving the NCS performance, especially in terms of power consumption, is its hardware realization using memristors. Therefore, in this work, we proposed an NCS with an adapted MLP-Mixer architecture and memristive weights. For this purpose, we used a passive crossbar array of (Co-Fe-B)x(LiNbO3)100−x memristors. Firstly, we studied the characteristics of such memristors, including their minimal resistive switching time, which was extrapolated to be in the picosecond range. Secondly, we created a fully hardware NCS with memristive weights that are capable of classification of simple 4-bit vectors. The system was shown to be robust to noise introduction in the input patterns. Finally, we used experimental memristive characteristics to simulate an adapted MLP-Mixer architecture that demonstrated a classification accuracy of (94.7 ± 0.3)% on the Modified National Institute of Standards and Technology (MNIST) dataset. The obtained results are the first steps toward the realization of memristive NCS with a promising MLP-Mixer architecture.



https://doi.org/10.1039/D3NH00421J