Zeitschriftenaufsätze ab 2018

Anzahl der Treffer: 1679
Erstellt: Sun, 30 Jun 2024 22:28:27 +0200 in 0.0713 sec


Hunold, Alexander; Machts, René; Haueisen, Jens
Head phantoms for bioelectromagnetic applications: a material study. - In: Biomedical engineering online, ISSN 1475-925X, Bd. 19 (2020), 87, S. 1-14

Assessments of source reconstruction procedures in electroencephalography and computations of transcranial electrical stimulation profiles require verification and validation with the help of ground truth configurations as implemented by physical head phantoms. For these phantoms, synthetic materials are needed, which are mechanically and electrochemically stable and possess conductivity values similar to the modeled human head tissues. Three-compartment head models comprise a scalp layer with a conductivity range of 0.137 S/m to 2.1 S/m, a skull layer with conductivity values between 0.066 S/m and 0.00275 S/m, and an intracranial volume with an often-used average conductivity value of 0.33 S/m. To establish a realistically shaped physical head phantom with a well-defined volume conduction configuration, we here characterize the electrical conductivity of synthetic materials for modeling head compartments. We analyzed agarose hydrogel, gypsum, and sodium chloride (NaCl) solution as surrogate materials for scalp, skull, and intracranial volume. We measured the impedance of all materials when immersed in NaCl solution using a four-electrode setup. The measured impedance values were used to calculate the electrical conductivity values of each material. Further, the conductivities in the longitudinal and transverse directions of reed sticks immersed in NaCl solution were measured to test their suitability for mimicking the anisotropic conductivity of white matter tracts.



https://doi.org/10.1186/s12938-020-00830-y
Ziegler, Mario; Dathe, André; Pollok, Kilian; Langenhorst, Falko; Hübner, Uwe; Wang, Dong; Schaaf, Peter
Metastable atomic layer deposition: 3D self-assembly toward ultradark materials. - In: ACS nano, ISSN 1936-086X, Bd. 14 (2020), 11, S. 15023-15031

Black body materials are promising candidates to meet future energy demands, as they are able to harvest energy from the total bandwidth of solar radiation. Here, we report on high-absorption near-blackbody-like structures (>98% for a wide solar spectrum range from 220 to 2500 nm) consisting of a silica scaffold and Ag nanoparticles with a layer thickness below 10 m, fabricated using metastable atomic layer deposition (MS-ALD). Several effects contribute collectively and in a synergistic manner to the ultrahigh absorption, including the pronounced heterogeneity of the nanoparticles in size and shape, particle plasmon hybridization, and the trapping of omnidirectionally scattered light in the 3D hierarchical hybrid structures. We propose that, in the future, MS-ALD needs to be considered as a simple and promising method to fabricate blackbody materials with excellent broadband absorption.



https://doi.org/10.1021/acsnano.0c04974
Alam, Shahidul; Islam, Md. Moidul; Chowdhury, Shadia; Meitzner, Rico; Kästner, Christian; Schubert, Ulrich Sigmar; Hoppe, Harald
Disentanglement of degradation mechanisms by analyzing aging dynamics of environmentally friendly processed polymer solar cells. - In: Energy technology, ISSN 2194-4296, Bd. 8 (2020), 12, 2000116, S. 1-10

Lifecycle assessments suggest preventing halogenated solvents or solvent additives for environmentally friendly polymer solar cells. Thus, the active layers of polymer:fullerene bulk heterojunction solar cells based on poly[4,8-bis-(2-ethyl-hexyl-thiophene-5-yl)-benzo[1,2-b:4,5-b0]dithiophene-2,6-diyl]-alt-[2-(20-ethyl-hexanoyl)-thieno[3,4-b]thiophen-4,6-diyl] (PBDTTT-CT) and the fullerene derivative [6,6]-phenyl-C70-butyric acid methyl ester (PC70BM) are cast from m-xylene solutions. Ortho-vanilline is used as a nonhazardous and nontoxic solvent additive. Completed photovoltaic devices are subjected to accelerated laboratory weathering tests. Photovoltaic parameters are periodically obtained from current-voltage recordings of the solar cells twice an hour under well-defined aging conditions following the International Summit on Organic Photovoltaic Stability (ISOS) protocols. An analysis of aging kinetics reveals the superposition of two individual degradation mechanisms, of which one is assigned to continued intermixing and the other one to the formation of a blocking layer by interfacial segregation.



https://doi.org/10.1002/ente.202000116
Xiao, Meiling; Xing, Zihao; Jin, Zhao; Liu, Changpeng; Ge, Junjie; Zhu, Jianbing; Wang, Ying; Zhao, Xiao; Chen, Zhongwei
Preferentially engineering FeN4 edge sites onto graphitic nanosheets for highly active and durable oxygen electrocatalysis in rechargeable Zn-air batteries. - In: Advanced materials, ISSN 1521-4095, Bd. 32 (2020), 49, 2004900, insges. 9 S.
Im Titel ist "4" tiefgestellt

Single-atom FeN4 sites at the edges of carbon substrates are considered more active for oxygen electrocatalysis than those in plane; however, the conventional high-temperature pyrolysis process does not allow for precisely engineering the location of the active site down to atomic level. Enlightened by theoretical prediction, herein, a self-sacrificed templating approach is developed to obtain edge-enriched FeN4 sites integrated in the highly graphitic nanosheet architecture. The in situ formed Fe clusters are intentionally introduced to catalyze the growth of graphitic carbon, induce porous structure formation, and most importantly, facilitate the preferential anchoring of FeN4 to its close approximation. Due to these attributes, the as-resulted catalyst (denoted as Fe/N-G-SAC) demonstrates unprecedented catalytic activity and stability for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) by showing an impressive half-wave potential of 0.89 V for the ORR and a small overpotential of 370 mV at 10 mA cm^-2 for the OER. Moreover, the Fe/N-G-SAC cathode displays encouraging performance in a rechargeable Zn-air battery prototype with a low charge-discharge voltage gap of 0.78 V and long-term cyclability for over 240 cycles, outperforming the noble metal benchmarks.



https://doi.org/10.1002/adma.202004900
Reum, Thomas; Töpfer, Hannes
A bicomplex finite element method for wave propagation in homogeneous media. - In: Compel, ISSN 2054-5606, Bd. 39 (2020), 5, S. 1031-1039

Purpose The purpose of this paper is to present the advantageous applicability of the bicomplex analysis in the context of the Finite Element Method (FEM). This method can be applied for wave propagation problems in various environments. Design/methodology/approach In this paper, the bicomplex number system is introduced and accordingly the differential equation for time-harmonic Maxwell’s equations in homogeneous media is derived in detail. Besides that, numerical simulations of wave propagation are performed and compared to the traditional approach based on classical FEM related to the Helmholtz equation. The appropriate error norm is investigated for different discretizations. Findings The results show that the use of bicomplex analysis in FEM leads to the higher accuracy of the electromagnetic field determination compared to the traditional Helmholtz approach. By using the bicomplex-valued formulation, the complex-valued electric and magnetic fields can be found directly and no additional FEM calculations are necessary to get the whole field. Originality/value The direct bicomplex formulation overcomes the use of the second order derivatives, which leads to the higher accuracy. In general, accurate calculations of the wave propagation in FEM is still an open problem and the approach described in this paper is a contribution to this class of problems.



https://doi.org/10.1108/COMPEL-01-2020-0010
Günther, Karsten; Bergmann, Jean Pierre
Influencing microstructure of vanadium carbide reinforced FeCrVC hardfacing during gas metal arc welding. - In: Metals, ISSN 2075-4701, Bd. 10 (2020), 10, 1345, insges. 11 S.

Vanadium carbide (VC) reinforced FeCrVC hardfacings have become important to improve the lifetime of tools suffering abrasive and impact loads. This is because the microstructural properties of such hardfacings enable the primary VCs to act as obstacles against the penetrating abrasive. Because dilution is supposed to be the key issue influencing the precipitation behaviour of primary carbides during surfacing, the development of deposit welding processes exhibiting a reduced thermal impact, and hence lower dilution to the base material, is the primary focus of the current research. By inserting an additional hot wire in the melt, an approach was developed to separate the material and energy input during gas metal arc welding (GMAW), and hence realised low dilution claddings. The carbide content could be increased, and a grain refinement was observed compared with conventional GMAW. These effects could be attributed to both the reduced dilution and heterogeneous nucleation.



https://doi.org/10.3390/met10101345
Zhang, Zhiyong; Sattel, Thomas; Zhu, Yujie; Li, Xuan; Dong, Yawei; Rui, Xiaoting
Mechanism and characteristics of global varying compliance parametric resonances in a ball bearing. - In: Applied Sciences, ISSN 2076-3417, Bd. 10 (2020), 21, 7849, S. 1-28

Varying compliance (VC) is an unavoidable form of parametric excitation in rolling bearings and can affect the stability and safety of the bearing and its supporting rotor system. To date, we have investigated VC primary resonance in ball bearings, and in this paper other parametric VC resonance types are addressed. For a classical ball bearing model with Hertzian contact and clearance nonlinearities between the rolling elements and raceway, the harmonic balance and alternating frequency/time domain (HB-AFT) method and Floquet theory are adopted to analyze the VC parametric resonances and their stabilities. It is found that the 1/2-order subharmonic resonances, 2-order superharmonic resonances, and various VC combination resonances, such as the 1-order and 2-order summed types, can be excited, thus resulting in period-1, period-2, period-4, period-8, period-35, quasi-period, and even chaotic VC motions in the system. Furthermore, the bifurcation and hysteresis characteristics of complex VC resonant responses are discussed, in which cyclic fold, period doubling, and the second Hopf bifurcation can occur. Finally, the global involution of VC resonances around bearing clearance-free operations (i.e., adjusting the bearing clearance to zero or one with low interference) are provided. The overall results extend the investigation of VC parametric resonance cases in rolling bearings.



https://doi.org/10.3390/app10217849
Häfner, Stephan; Dürr, André; Waldschmidt, Christian; Thomä, Reiner
Mitigation of leakage in FMCW radars by background subtraction and whitening. - In: IEEE microwave and wireless components letters, Bd. 30 (2020), 11, S. 1105-1107

Leakage in frequency-modulated continuous-wave (FMCW) radar with a homodyne receiver induces strong signal components in the lower frequency parts of the radar observations. There, the dynamic range of the observations has been reduced, such that close and weak targets are hard to detect. In this letter, a signal processing method is proposed to mitigate the leakage. First, background subtraction is applied to cancel the leakage. As the cancellation is imperfect, a noisy signal portion remains: the leakage noise. A statistical model is developed to describe the leakage noise as a colored noise process. This model is parameterized from measurements and used to whiten the observations. As a result, the dynamic range is improved, and the close targets become better detectable.



https://doi.org/10.1109/LMWC.2020.3023850
Visaveliya, Nikunjkumar R.; Köhler, Michael
Emerging structural and interfacial features of particulate polymers at the nanoscale. - In: Langmuir, ISSN 1520-5827, Bd. 36 (2020), 44, S. 13125-13143

Particulate polymers at the nanoscale are exceedingly promising for diversified functional applications ranging from biomedical and energy to sensing, labeling, and catalysis. Tailored structural features (i.e., size, shape, morphology, internal softness, interior cross-linking, etc.) determine polymer nanoparticles' impact on the cargo loading capacity and controlled/sustained release, possibility of endocytosis, degradability, and photostability. The designed interfacial features, however (i.e., stimuli-responsive surfaces, wrinkling, surface porosity, shell-layer swellability, layer-by-layer surface functionalization, surface charge, etc.), regulate nanoparticles interfacial interactions, controlled assembly, movement and collision, and compatibility with the surroundings (e.g., solvent and biological environments). These features define nanoparticles' overall properties/functions on the basis of homogeneity, stability, interfacial tension, and minimization of the surface energy barrier. Lowering of the resultant outcomes is directly influenced by inhomogeneity in the structural and interfacial design through the structure-function relationship. Therefore, a key requirement is to produce well-defined polymer nanoparticles with controlled characteristics. Polymers are amorphous, flexible, and soft, and hence controlling their structural/interfacial features through the single-step process is a challenge. The microfluidics reaction strategy is very promising because of its wide range of advantages such as efficient reactant mixing and fast phase transfer. Overall, this feature article highlights the state-of-the-art synthetic features of polymer nanoparticles with perspectives on their advanced applications.



https://doi.org/10.1021/acs.langmuir.0c02566
Huo, Dexian; Chen, Bin; Meng, Guowen; Huang, Zhulin; Li, Mingtao; Lei, Yong
Ag-nanoparticlesbacterial nanocellulose as a 3D flexible and robust surface-enhanced raman scattering substrate. - In: ACS applied materials & interfaces, ISSN 1944-8252, Bd. 12 (2020), 45, S. 50713-50720

We present a well-designed, low-cost, and simple synthetic approach to realizing the hybrid composites of Ag nanoparticle-decorated bacterial nanocellulose (denoted as Ag-NPsBNC) as a three-dimensional (3D) flexible surface-enhanced Raman scattering (SERS) substrate with ultrahigh SERS sensitivity, excellent signal reproducibility, and stability. The homogeneous Ag-NPs with high density were in situ grown on the networked BNC fibers by the controlled silver mirror reaction and volume shrinkage treatment, which created uniformly distributed SERS "hot spots" in the 3D networked hybrid substrate. Attributed to these unique 3D hot spots, the as-presented Ag-NPs@BNC substrates exhibited ultrahigh sensitivity and good spectral reproducibility. Moreover, the hydrophilic BNC exhibits good permeability and adsorption performances, which could capture the target molecules in the highly active hot spot areas to further improve the SERS sensitivity. As a result, not only dye molecules (rhodamine 6G) but also toxic organic pollutants such as 2-naphthalenethiol and thiram have been detected using the hybrid substrates as SERS substrates, with sensitivities of 1.6 × 10-8 and 3.8 × 10-9 M, respectively. The good linear response of the intensity and the logarithmic concentration revealed promising applications in the rapid and quantitative detection of toxic organic pollutants. Besides, this self-supported Ag-NPs@BNC substrate demonstrated good stability and flexibility for varied detection conditions. Therefore, the 3D networked, flexible, ultrasensitive, and stable Ag-NPs@BNC substrate shows potential as a versatile SERS substrate in the rapid identification of various organic molecules.



https://doi.org/10.1021/acsami.0c13828