Tagungsbeiträge

Anzahl der Treffer: 2034
Erstellt: Wed, 17 Jul 2024 23:03:17 +0200 in 0.1026 sec


Ortlepp, Ingo; Stauffenberg, Jaqueline; Krötschl, Anja; Dontsov, Denis; Zöllner, Jens-Peter; Hesse, Steffen; Reuter, Christoph; Strehle, Steffen; Fröhlich, Thomas; Rangelow, Ivo W.; Manske, Eberhard
Nanofabrication and -metrology by using the nanofabrication machine (NFM-100). - In: Novel Patterning Technologies 2022, (2022), 120540A, S. 120540A-1-120540A-12

The feature dimensions of integrated circuits are becoming smaller and the fabrication, metrology and inspection is becoming harder to be fulfilled. Fast-writing of long respectively large nano-features with Scanning-ProbeLithography and their inspection with an Atomic Force Microscope (AFM) is a challenge, for the accomplishment of which the Nanofabrication Machine (NFM-100) can serve as a beneficial experimental platform for basic research in the field of scale-spanning nanomeasuring and nanofabrication. The NFM-100 has an integrated tipbased system, which can be used as an AFM as well as for Field-Emission Scanning Probe Lithography (FESPL). The combination of both systems offers the possibility to fabricate and analyze micro- and nanostructures with high resolution and precision down to a single nanometre over a large area of 100 mm in diameter in a single configuration without tool or sensor change. Thus, in contrast to conventional optical inspection and alignment systems, the NFM-100 offers the potential for full lithographic and metrological automation. For FESPL, the implemented active probes enable an in-situ inspection capability, a quantitative mapping at unprecedented resolution, as well as an integrated overlay alignment system. In this paper, the basic set-up of the NFM-100 as well as the capability of the system for long range AFM scans and FESPL is demonstrated.



https://doi.org/10.1117/12.2615118
Mohr-Weidenfeller, Laura; Hofmann, Martin; Birli, Oliver; Häcker, Annika-Verena; Reinhardt, Carsten; Manske, Eberhard
Metrologische Nanopositionierung kombiniert mit Zwei-Photonen-Laserdirektschreiben :
Metrological nanopositioning combined with two-photon direct laser writing. - In: Technisches Messen, ISSN 2196-7113, Bd. 89 (2022), 7/8, S. 507-514

The extension of nanopositioning and nanomeasuring machines (NPM-machines) to fabrication machines by using a femtosecond laser for the implementation of direct laser writing by means of two-photon absorption (2PA) is a promising approach for cross-scale metrological fabrication in the field of lithographic techniques [24]. To this end, a concept for integrating two-photon technology into an NPM machine was developed and implemented, followed by a characterization of the system and targeted investigations to provide evidence for the synergy of the two techniques. On this basis, a new approach to high-throughput micro- and nano-fabrication was developed and investigated, demonstrating new possibilities in cross-scale, high-precision manufacturing [6]. This mix-and-match approach is based on a combination of 2PA laser writing with field emission lithography to fabricate masters for subsequent nanoimprint lithography. Not only the advantages of the large positioning range of the NMM-1 could be highlighted, but also the advantages resulting from the highly accurate positioning. A systematic reduction of the distance between two adjacent lines resulted in a minimum photoresist width of less than [Math Processing Error] [16], which can be classified among the smallest distances between two laser-written lines described in the literature [4], [10], [20]. The center-to-center distance of the lines of about [Math Processing Error] at a numerical aperture of 0.16 and a wavelength of 801 nm is only about [Math Processing Error] of the Rayleigh diffraction limit extended for the two-photon process. Thus, for the first time, a resist width far below the diffraction limit could be realized with conventional two-photon laser writing in positive photoresist.



https://doi.org/10.1515/teme-2021-0127
Häcker, Annika-Verena; Mohr-Weidenfeller, Laura; Stolzenberg, Clara F. L.; Reinhardt, Carsten; Manske, Eberhard
Modifications to a high-precision direct laser writing setup to improve its laser microfabrication. - In: Laser-Based Micro- and Nanoprocessing XVI, (2022), 119890U, S. 119890U-1-119890U-7

Two-photon-absorption (2PA) techniques enables the possibility to create extremely fine structures in photosensitive materials. For direct laser writing as micro- or nanofabrication a laser system can be combined with highly precise positioning systems. These are mostly limited by a few hundreds micrometer positioning range with applications based on piezoelectric stages or even just relatively few tens micrometer positioning range with applications based on galvanometer scanners. Although these techniques are precise, but stitching methods are required for larger fabrication areas. Therefore, a setup consisting of a femtosecond laser for 2PA and a nanopositioning and nanomeasuring machine (NMM-1) was developed for high precision laser writing on lager surfaces. Further developments of the system should enable a significant improvement in high-precision and stitching free direct laser writing. In order to combine the the femtosecond laser and the NMM-1 into a functional unit, to write complex structures with highest accuracy and homogeneity, further improvements like a beam expansion for a better use of the numerical aperture of the objective and a new femtosecond laser with a integrated power measurement are realized. This showed improvements in line width for nano strucuring. Advantages and disadvantages as well as further developments of the NMM-1 system will be discussed related to current developments in the laser beam and nanopositioning system optimization.



https://doi.org/10.1117/12.2609417
Thiele, Sebastian; Eliseyev, Ilya A.; Smirnov, Alexander N.; Jacobs, Heiko O.; Davydov, Valery Y.; Schwierz, Frank; Pezoldt, Jörg
Electric bias-induced edge degradation of few-layer MoS2 devices. - In: Materials today, ISSN 2214-7853, Bd. 53 (2022), 2, S. 281-284

In this work, we experimentally investigate the effects of electric bias on the degradation of few-layer MoS2 back-gated field-effect transistors in ambient air. The devices were fabricated using mechanically exfoliated MoS2 flakes, which were transferred to a Si/SiO2 substrate by a PDMS-based transfer. We report an accelerated electric bias-induced degradation of the devices under investigation and used optical and scanning electron microscopy (SEM) to monitor changes of the morphology of the MoS2 channel. In particular, we found a linear dependency of the degradation on the electric field between the Ti/Au source and drain contacts. In addition, we identify four regions in which morphological changes occur, of which the edges of the MoS2 channel are most affected.



https://doi.org/10.1016/j.matpr.2021.05.298
Mathew, Sobin; Lebedev, Sergey P.; Lebedev, Alexander A.; Hähnlein, Bernd; Stauffenberg, Jaqueline; Udas, Kashyap; Jacobs, Heiko O.; Manske, Eberhard; Pezoldt, Jörg
Nanoscale surface morphology modulation of graphene - i-SiC heterostructures. - In: Materials today, ISSN 2214-7853, Bd. 53 (2022), 2, S. 289-292

A multitude gratings design consists of gratings with different pitches ranging from the micrometre down to sub 40 nm scale combined with sub 10 nm step heights modulating the surface morphology for length scale measurements is proposed. The surface morphology modulation was performed using electron beam lithography incorporating a standard semiconductor processing technology. The critical dimension, edge roughness, step heights and line morphology in dependence on the grating pitch is studied.



https://doi.org/10.1016/j.matpr.2021.06.427
Benisch, Michael F.; Liebl, Johannes; Bogner, Werner; Fähnle, Oliver; Rädlein, Edda
Impact analysis of temperature and humidity effects on polishing. - In: EOS Annual Meeting (EOSAM 2021), (2021), 03011, S. 1-3

The polishing process for optical glass is one with intertwined chemical and mechanical processes. The aim of the present study is to verify whether control of these factors can be used to improve the efficiency of the polishing process.



https://doi.org/10.1051/epjconf/202125503011
Dyck, Tobias; Bund, Andreas
Investigation of the contact resistance as a function of the temperature for connectors and wire terminals. - In: 30th International Conference on Electrical Contacts, (2021), S. 202-209

The hardness of coating materials such as tin or gold is temperature-dependent, so the contact area and thus the contact resistance change depending on the temperature. Contact resistance measurements are carried out on hard gold- and tin-coated connector contacts at elevated temperatures. It is shown that the contact resistance decreases significantly with increasing temperature. Tests are also being carried out with solid and stranded copper wires. In addition to the hardness, foreign layers on the copper conductors have a further influence on the contact resistance.



https://doi.org/10.22032/dbt.51522
Bohm, Sebastian; Grunert, Malte; Honig, Hauke; Wang, Dong; Schaaf, Peter; Runge, Erich; Zhong, Jinhui; Lienau, Christoph
Optical properties of nanoporous gold sponges using model structures obtained from three-dimensional phase-field Simulation. - In: 2021 Photonics & Electromagnetics Research Symposium (PIERS), (2021), S. 517-523

Nanoporous sponge structures show fascinating optical properties related to a strong spatial localization of field modes and a resulting strong field enhancement. In this work, a novel efficient method for the generation of three-dimensional nanoporous sponge structures using time-resolved phase-field simulations is presented. The algorithm for creating the geometries and the underlying equations are discussed. Different sponge geometries are generated and compared with sponges that have been experimentally measured using FIB tomography. Meaningful parameters are defined for the comparison of the geometric properties of the random sponge structures. In addition, the optical properties of the simulated sponges are compared with the experimentally measured sponges. It is shown that a description using effective media does not provide a good agreement to the actual spectra. This shows that the optical properties are largely determined by the local structures. In contrast, the numerically obtained spectra of the phase-field sponge models accounting for the real-space structure show excellent agreement with the spectra of the experimentally measured sponges.



https://doi.org/10.1109/PIERS53385.2021.9694971
Phi, Hai Binh; Bohm, Sebastian; Runge, Erich; Strehle, Steffen; Dittrich, Lars
Wafer-level fabrication of an EWOD-driven micropump. - In: MikroSystemTechnik, (2021), S. 574-577

Schulz, Alexander; Bartsch, Heike; Gutzeit, Nam; Matthes, Sebastian; Glaser, Marcus; Ruh, Andreas; Müller, Jens; Schaaf, Peter; Bergmann, Jean Pierre; Wiese, Steffen
Characterization of reactive multilayer systems deposited on LTCC featuring different surface morphologies. - In: MikroSystemTechnik, (2021), S. 506-510