Zeitschriftenaufsätze und Buchbeiträge

Anzahl der Treffer: 1457
Erstellt: Wed, 17 Jul 2024 23:03:01 +0200 in 0.0612 sec


Vardo, Emina; Sauni Camposano, Yesenia Haydee; Matthes, Sebastian; Glaser, Marcus; Bartsch, Heike; Hildebrand, Jörg; Bergmann, Jean Pierre; Schaaf, Peter
Impact of substrate thickness and surface roughness on Al/Ni multilayer reaction kinetics. - In: Advanced engineering materials, ISSN 1527-2648, Bd. n/a (2024), n/a, 2302269, S. 1-10

Reactive multilayers comprising alternating nanoscale layers of Al and Ni exhibit potential across various applications, including localized heating for welding and joining. Control over reaction properties is pivotal for emerging applications, such as chemical time delays or neutralization of biological or chemical weapons. In this research, insights are offered into the intricate interplay between substrate thickness, surface roughness, and the behavior of Al/Ni reactive multilayers, opening avenues for tailored applications in various domains. To observe this interplay, silica with various thicknesses from 0.4 to 1.6 μm is deposited on polished single-crystalline Si and rough poly-Si base substrates. Additionally, to analyze the impact of varying silica thickness along the sample length on reaction behavior, silica in steplike shape is fabricated. Subsequently, Al/Ni multilayers with 5 μm total thickness and 20 or 50 nm bilayer periodicities are deposited. Reaction velocity and temperature are monitored with a high-speed camera and pyrometer. In the results, it is indicated that silica thickness significantly affects self-propagation in multilayers. The reaction is not self-sustained for silica layers ≤ 0.4 μm, depending on bilayer periodicity and substrate roughness. The velocity increases or decreases based on the direction of reaction propagation, whether it moves upward or downward, in relation to the thickness of silica.



https://doi.org/10.1002/adem.202302269
Langgemach, Wiebke; Baumann, Andreas; Ehrhardt, Manuela; Preußner, Thomas; Rädlein, Edda
The strength of uncoated and coated ultra-thin flexible glass under cyclic load. - In: AIMS Materials Science, ISSN 2372-0484, Bd. 11 (2024), 2, S. 343-368

Ultra-thin flexible glass with thicknesses of 100 µm or below is a substrate in the fields of optics, electronics, and semiconductors. Its brittleness is challenging in production processes like physical vapor deposition processes, especially in roll-to-roll production. In many cases, multiple geometric deformations take place and each step, like coating or cutting, influences the glass strength. By now, the relation between the strength of ultra-thin glass under quasi-static conditions and its strength under cyclic load has not been studied. Moreover, the effect of coatings has not been investigated. Both aspects are crucial to design reliable production processes. Therefore, the strength of ultra-thin glass under cyclic load was studied for uncoated and coated substrates. Two coating types were investigated: a single indium tin oxide film and a seven-layer antireflective layer stack. The coatings significantly influence the strength of the underlying glass in both test modes. The barrier properties, thin film stress, and the morphology/crystalline structure are identified as the major characteristics influencing the strength.



https://doi.org/10.3934/matersci.2024019
Riegler, Sascha S.; Sauni Camposano, Yesenia Haydee; Jaekel, Konrad; Frey, Maximilian; Neemann, Christian; Matthes, Sebastian; Vardo, Emina; Chegeni, Maryam R.; Bartsch, Heike; Busch, Ralf; Müller, Jens; Schaaf, Peter; Gallino, Isabella
Nanocalorimetry of nanoscaled Ni/Al multilayer films: on the methodology to determine reaction kinetics for highly reactive films. - In: Advanced engineering materials, ISSN 1527-2648, Bd. 0 (2024), 0, 2302279, S. 1-10

Free-standing Ni/Al multilayer films with a planar morphology, a bilayer thickness of 20 nm, and an average composition of Ni50Al50 (at%) deposited by direct current magnetron sputtering are investigated by nanocalorimetry and conventional calorimetry. Both the novel fast differential scanning calorimeter (FDSC) Flash DSC 2+ from Mettler-Toledo (MT) and conventional calorimeter MT DSC 3 are used to cover a range of heating rates from 0.1 to 10^4 K s^−1. A quantitative kinetic study of the interdiffusion and phase reaction sequence is performed via a Kissinger analysis covering five orders of magnitude of heating rates. Using the calorimetric data, the derived apparent activation energies suggest monotonic reaction kinetics over the entire range of heating rates applied. To correct the thermal lag at the highest heating rates with the FDSC for nonadhered free-standing films, a new methodology for its correction is used. Overall, this work extends the application of commercial FDSC to nonadhered films.



https://doi.org/10.1002/adem.202302279
Charfi, Bilel; Herrmann, Andreas; Zekri, Mohamed; Qasymeh, Montasir; Damak, Kamel; Maâlej, Ramzi
Correlation of rare earth coordination and spectral properties in Er3+ doped Na2O-Al2O3-SiO2 glasses with different Al2O3 concentrations by molecular dynamics simulations. - In: Journal of luminescence, ISSN 0022-2313, Bd. 273 (2024), 120676, S. 1-9

The molecular structure of Er2O3 doped Na2O-Al2O3-SiO2 glasses with varying Na2O/Al2O3 ratios is explored via molecular dynamics (MD) simulations using the so-called inherent structure sampling method, which allows the calculation of a large number of local structures of low concentration, as needed to determine the surrounding of low concentration dopants. General structural parameters, including radial distribution functions, coordination numbers and interatomic distances of all network forming and network modifying ions are reported. However, in this work, special attention is devoted to the effect of Al2O3 concentration on the local surrounding of the doped Er3+ ions. It is shown that the Er atoms coordinate 5-6 oxygen ions in their first coordination sphere in the investigated glasses. The Er-O coordination number increases monotonically with increasing Al2O3 concentration and decreasing Na2O/Al2O3 ratio. It is found that the Er atoms are preferably connected to non-bridging oxygen atoms (NBO) in all glasses, even in the peraluminous composition. Additionally, the MD simulation results are compared to the glasses spectral properties that were already investigated in detail by Tanabe and Hanada. The increasing Er-NBO coordination number derived by MD simulations could be correlated with the increased peak splitting of the Er3+ absorption peaks reported by Tanabe and Hanada. Furthermore, a correlation between the Judd-Ofelt parameters published by Tanabe and Hanada and the Er3+ coordination in the glass structure is discussed. It is shown that the Er-O coordination increases with increasing Ω2 parameter as the Al2O3 concentration increases in the glass composition. A correlation of the average overall Er-O coordination number with the symmetry of the local Er site is proposed.



https://doi.org/10.1016/j.jlumin.2024.120676
Baumer, Christoph; Schmidt, Udo; Bund, Andreas
Investigating the suitability of various silver(I) complexes for use in a cyanide-free silver electrolyte. - In: Coatings, ISSN 2079-6412, Bd. 14 (2024), 5, 618, S. 1-16

The suitability of various nitrogen, sulfur, oxygen, and phosphorus compounds as complexing agents in a silver electrolyte was examined by using potentiometric titration under practical conditions. The setup consisted of three electrodes to measure the pH and the activity of the silver ions simultaneously. Different ratios of silver to complexing agent from 1:10 to 1:1 at a constant ionic strength of 0.2 mol/L were investigated. The type of the complexes and their corresponding critical stability constants were evaluated by fitting the measured data using a self-developed algorithm. The pH and Nernst potential curve were calculated for the assumed complexes based on the law of mass action to find the best approximation. The correct definition of the occurring species is challenging and can lead to significant changes in the calculation of stability constants. For this reason, the measured silver potential curves were primarily used for the rating of the complexing agents. An evaluation of the measurements shows that the donor atom of the complexing agent and its ligand field strongly affected the stability and type of the complexes. Only a few complexing agents were found to be suitable for use in the cyanide-free silver electrolyte.



https://doi.org/10.3390/coatings14050618
Smyrnova, Kateryna; Sahul, Martin; Haršáni, Marián; Beresnev, Vyacheslav; Truchlý, Martin; Čaplovič, L’ubomír; Čaplovičová, Mária; Kusý, Martin; Kozak, Andrii; Flock, Dominik; Kassymbaev, Alexey; Pogrebnjak, Aleksandr Dmitrievič
Composite materials with nanoscale multilayer architecture based on cathodic-arc evaporated WN/NbN coatings. - In: ACS omega, ISSN 2470-1343, Bd. 9 (2024), 15, S. 17247-17265

Hard nitride coatings are commonly employed to protect components subjected to friction, whereby such coatings should possess excellent tribomechanical properties in order to endure high stresses and temperatures. In this study, WN/NbN coatings are synthesized by using the cathodic-arc evaporation (CA-PVD) technique at various negative bias voltages in the 50-200 V range. The phase composition, microstructural features, and tribomechanical properties of the multilayers are comprehensively studied. Fabricated coatings have a complex structure of three nanocrystalline phases: β-W2N, δ-NbN, and ε-NbN. They demonstrate a tendency for (111)-oriented grains to overgrow (200)-oriented grains with increasing coating thickness. All of the data show that a decrease in the fraction of ε-NbN phase and formation of the (111)-textured grains positively impact mechanical properties and wear behavior. Investigation of the room-temperature tribological properties reveals that with an increase in bias voltage from −50 to −200 V, the wear mechanisms change as follows: oxidative &flech; fatigue and oxidative &flech; adhesive and oxidative. Furthermore, WN/NbN coatings demonstrate a high hardness of 33.6-36.6 GPa and a low specific wear rate of (1.9-4.1) × 10-6 mm3/Nm. These results indicate that synthesized multilayers hold promise for tribological applications as wear-resistant coatings.



https://doi.org/10.1021/acsomega.3c10242
Zhao, Yuguo; Björk, Emma M.; Yan, Yong; Schaaf, Peter; Wang, Dong
Recent progress in transition metal based catalysts and mechanism analysis for alcohol electrooxidation reactions. - In: Green chemistry, ISSN 1463-9270, Bd. 26 (2024), 9, S. 4987-5003

In order to address energy and environmental challenges effectively, there is a need to promote renewable energy-driven electrochemical conversion technologies, particularly electrosynthesis. Electrosynthesis has the potential to convert abundant molecules into valuable chemicals and fuels. However, the widespread adoption of electrosynthesis is often hindered by the slow oxygen evolution reaction (OER). To overcome this limitation, we can employ the more efficient alcohol electrooxidation reaction (AOR), utilizing renewable biomass-derived alcohols as an alternative to OER for producing high-value chemicals. Consequently, the development of efficient AOR catalysts, in conjunction with cathodic reduction reactions (hydrogen evolution, oxygen, and nitrogen electroreduction, etc.), is crucial for sustainable and environmentally-friendly advancements. A thorough understanding of AOR mechanisms is essential for catalyst design and can be achieved through the utilization of in situ characterization techniques and density functional theory (DFT) calculations. This review summarizes recent progress in AOR catalysts, with a particular focus on the electrooxidation of monohydric alcohols, polyols, and associated studies on reaction mechanisms. Additionally, the review identifies key factors impeding AOR development and provides insights into future prospects.



https://doi.org/10.1039/D4GC00227J
Jaekel, Konrad; Riegler, Sascha Sebastian; Sauni Camposano, Yesenia Haydee; Matthes, Sebastian; Glaser, Marcus; Bergmann, Jean Pierre; Schaaf, Peter; Gallino, Isabella; Müller, Jens; Bartsch, Heike
Influence of increasing density of microstructures on the self-propagating reaction of Al/Ni reactive nanoscale multilayers. - In: Advanced engineering materials, ISSN 1527-2648, Bd. 0 (2024), 0, insges. 21 S.

Surface structuring methods are crucial in semiconductor manufacturing, as they enable the creation of intricate structures on the semiconductor surface, influencing the material’s electrical, mechanical, and chemical properties. This study employs one such structuring method known as reactive ion etching to create black Si structures on silicon substrates. After thermal oxidation, their influence on the reaction of Al/Ni nanoscale multilayers is. For this purpose, various densities of thermally oxidized black Si structures are investigated. It reveals distinct reactive behaviors without corresponding differences in energy release during differential scanning calorimetry measurements. Higher oxidized black Si structure densities result in elevated temperatures and faster reaction propagation, showing fewer defects and reduced layer connections in cross-sectional analyses. The properties of the reactive multilayers on high structure density show the same performance as a reaction on flat thermal SiO2, causing delamination when exceeding 23 structures per µm2. Conversely, lower structure density ensures attachment of reactive multilayers to the substrate due to an increased number of defects, acting as predetermined breaking points for the AlNi alloy. By establishing the adhesion between the reacted multilayer and the substrate, surface structuring could lead to a potential increase in bond strength when using reactive multilayers for bonding.



https://doi.org/10.1002/adem.202302225
Matthes, Sebastian; Glaser, Marcus; Vardo, Emina; Sauni Camposano, Yesenia Haydee; Jaekel, Konrad; Bergmann, Jean Pierre; Schaaf, Peter
Tailoring the reaction path: external crack initiation in reactive Al/Ni multilayers. - In: Advanced engineering materials, ISSN 1527-2648, Bd. 0 (2024), 0, 2302271, S. 1-6

The influence of intentionally externally induced cracks in reactive Al/Ni multilayer systems is investigated. These cracks affect the reaction dynamics and enable tailoring of the reaction path and the overall velocity of the reaction front. The influence of layer variations onto mechanical crack formation and resulting reaction behavior are investigated. High-speed camera imaging shows the meandering propagation of the reaction front along the crack paths. Therefore, the mechanical cracking process significantly changes the total velocity of the reaction front and thus offers a possibility to control the self-propagating high-temperature synthesis process. It is shown that the phase formation remains unaffected despite the applied strains and cracks. This favorable stability in phase formation ensures predictability and provides insight into the adaptation of RMS for precision applications in joints. The results expand the understanding of mechanical cracking as a tool to influence high-temperature synthesis in reactive multilayer coatings and provide an opportunity to expand the range of applications.



https://doi.org/10.1002/adem.202302271
Abedin, Saadman; Kurtash, Vladislav; Mathew, Sobin; Thiele, Sebastian; Jacobs, Heiko O.; Pezoldt, Jörg
Defects contributing to hysteresis in few-layer and thin-film MoS2 memristive devices. - In: Materials, ISSN 1996-1944, Bd. 17 (2024), 6, 1350, S. 1-14

Molybdenum disulfide, a two-dimensional material extensively explored for potential applications in non-von Neumann computing technologies, has garnered significant attention owing to the observed hysteresis phenomena in MoS2 FETs. The dominant sources of hysteresis reported include charge trapping at the channel-dielectric interface and the adsorption/desorption of molecules. However, in MoS2 FETs with different channel thicknesses, the specific nature and density of defects contributing to hysteresis remain an intriguing aspect requiring further investigation. This study delves into memristive devices with back-gate modulated channel layers based on CVD-deposited flake-based and thin-film-based MoS2 FETs, with a few-layer (FL) and thin-film (TF) channel thickness. Analysis of current-voltage (I−V) and conductance-frequency (Gp/ω−f) measurements led to the conclusion that the elevated hysteresis observed in TF MoS2 devices, as opposed to FL devices, stems from a substantial contribution from intrinsic defects within the channel volume, surpassing that of interface defects. This study underscores the significance of considering both intrinsic defects within the bulk and the interface defects of the channel when analyzing hysteresis in MoS2 FETs, particularly in TF FETs. The selection between FL and TF MoS2 devices depends on the requirements for memristive applications, considering factors such as hysteresis tolerance and scaling capabilities.



https://doi.org/10.3390/ma17061350