Publikationen an der Fakultät für Informatik und Automatisierung ab 2015

Anzahl der Treffer: 1956
Erstellt: Wed, 17 Jul 2024 23:08:55 +0200 in 0.1027 sec


Khan, Asad; Antonakakis, Marios; Vogenauer, Nikolas; Haueisen, Jens; Wolters, Carsten H.
Individually optimized multi-channel tDCS for targeting somatosensory cortex. - In: Clinical neurophysiology, ISSN 1872-8952, Bd. 134 (2022), S. 9-26

Objective - Transcranial direct current stimulation (tDCS) is a non-invasive neuro-modulation technique that delivers current through the scalp by a pair of patch electrodes (2-Patch). This study proposes a new multi-channel tDCS (mc-tDCS) optimization method, the distributed constrained maximum intensity (D-CMI) approach. For targeting the P20/N20 somatosensory source at Brodmann area 3b, an integrated combined magnetoencephalography (MEG) and electroencephalography (EEG) source analysis is used with individualized skull conductivity calibrated realistic head modeling. - Methods - Simulated electric fields (EF) for our new D-CMI method and the already known maximum intensity (MI), alternating direction method of multipliers (ADMM) and 2-Patch methods were produced and compared for the individualized P20/N20 somatosensory target for 10 subjects. - Results - D-CMI and MI showed highest intensities parallel to the P20/N20 target compared to ADMM and 2-Patch, with ADMM achieving highest focality. D-CMI showed a slight reduction in intensity compared to MI while reducing side effects and skin level sensations by current distribution over multiple stimulation electrodes. - Conclusion - Individualized D-CMI montages are preferred for our follow up somatosensory experiment to provide a good balance between high current intensities at the target and reduced side effects and skin sensations. - Significance - An integrated combined MEG and EEG source analysis with D-CMI montages for mc-tDCS stimulation potentially can improve control, reproducibility and reduce sensitivity differences between sham and real stimulations.



https://doi.org/10.1016/j.clinph.2021.10.016
Schier, Peter; Liebl, Maik; Steinhoff, Uwe; Wiekhorst, Frank; Baumgarten, Daniel
Experimental demonstration of improved magnetorelaxometry imaging performance using optimized coil configurations. - In: Medical physics, ISSN 2473-4209, Bd. 49 (2022), 5, S. 3361-3374

Background: Magnetorelaxometry imaging is an experimental imaging technique capable of reconstructing magnetic nanoparticle distributions inside a volume noninvasively and with high specificity. Thus, magnetorelaxometry imaging is a promising candidate for monitoring a number of therapeutical approaches that employ magnetic nanoparticles, such as magnetic drug targeting and magnetic hyperthermia, to guarantee their safety and efficacy. Prior to a potential clinical application of this imaging modality, it is necessary to optimize magnetorelaxometry imaging systems to produce reliable imaging results and to maximize the reconstruction accuracy of the magnetic nanoparticle distributions. Multiple optimization approaches were already applied throughout a number of simulation studies, all of which yielded increased imaging qualities compared to intuitively designed measurement setups. Purpose: None of these simulative approaches was conducted in practice such that it still remains unclear if the theoretical results are achievable in an experimental setting. In this study, we demonstrate the technical feasibility and the increased reconstruction accuracy of optimized coil configurations in two distinct magnetorelaxometry setups. Methods: The electromagnetic coil positions and radii of a cuboidal as well as a cylindrical magnetorelaxometry imaging setup are optimized by minimizing the system matrix condition numbers of their corresponding linear forward models. The optimized coil configurations are manufactured alongside with two regular coil grids. Magnetorelaxometry measurements of three cuboidal and four cylindrical magnetic nanoparticle phantoms are conducted, and the resulting reconstruction qualities of the optimized and the regular coil configurations are compared. Results: The computed condition numbers of the optimized coil configurations are approximately one order of magnitude lower compared to the regular coil grids. The reconstruction results show that for both setups, every phantom is recovered more accurately by the optimized coil configurations compared to the regular coil grids. Additionally, the optimized coil configurations yield better signal qualities. Conclusions: The presented experimental study provides a proof of the practicality and the efficacy of optimizing magnetorelaxometry imaging systems with respect to the condition numbers of their system matrices, previously only demonstrated in simulations. From the promising results of our study, we infer that the minimization of the system matrix condition number will also enable the practical optimization of other design parameters of magnetorelaxometry imaging setups (e.g., sensor configuration, coil currents, etc.) in order to improve the achievable reconstruction qualities even further, eventually paving the way towards clinical application of this imaging modality.



https://doi.org/10.1002/mp.15594
Katzmann, Alexander;
Deep learning for clinical decision support in oncology. - Ilmenau : Universitätsbibliothek, 2022. - 1 Online-Ressource (168 Seiten)
Technische Universität Ilmenau, Dissertation 2022

Bibliography p. 123-139

In den letzten Jahrzehnten sind medizinische Bildgebungsverfahren wie die Computertomographie (CT) zu einem unersetzbaren Werkzeug moderner Medizin geworden, welche eine zeitnahe, nicht-invasive Begutachtung von Organen und Geweben ermöglichen. Die Menge an anfallenden Daten ist dabei rapide gestiegen, allein innerhalb der letzten Jahre um den Faktor 15, und aktuell verantwortlich für 30 % des weltweiten Datenvolumens. Die Anzahl ausgebildeter Radiologen ist weitestgehend stabil, wodurch die medizinische Bildanalyse, angesiedelt zwischen Medizin und Ingenieurwissenschaften, zu einem schnell wachsenden Feld geworden ist. Eine erfolgreiche Anwendung verspricht Zeitersparnisse, und kann zu einer höheren diagnostischen Qualität beitragen. Viele Arbeiten fokussieren sich auf "Radiomics", die Extraktion und Analyse von manuell konstruierten Features. Diese sind jedoch anfällig gegenüber externen Faktoren wie dem Bildgebungsprotokoll, woraus Implikationen für Reproduzierbarkeit und klinische Anwendbarkeit resultieren. In jüngster Zeit sind Methoden des "Deep Learning" zu einer häufig verwendeten Lösung algorithmischer Problemstellungen geworden. Durch Anwendungen in Bereichen wie Robotik, Physik, Mathematik und Wirtschaft, wurde die Forschung im Bereich maschinellen Lernens wesentlich verändert. Ein Kriterium für den Erfolg stellt die Verfügbarkeit großer Datenmengen dar. Diese sind im medizinischen Bereich rar, da die Bilddaten strengen Anforderungen bezüglich Datenschutz und Datensicherheit unterliegen, und oft heterogene Qualität, sowie ungleichmäßige oder fehlerhafte Annotationen aufweisen, wodurch ein bedeutender Teil der Methoden keine Anwendung finden kann. Angesiedelt im Bereich onkologischer Bildgebung zeigt diese Arbeit Wege zur erfolgreichen Nutzung von Deep Learning für medizinische Bilddaten auf. Mittels neuer Methoden für klinisch relevante Anwendungen wie die Schätzung von Läsionswachtum, Überleben, und Entscheidungkonfidenz, sowie Meta-Learning, Klassifikator-Ensembling, und Entscheidungsvisualisierung, werden Wege zur Verbesserungen gegenüber State-of-the-Art-Algorithmen aufgezeigt, welche ein breites Anwendungsfeld haben. Hierdurch leistet die Arbeit einen wesentlichen Beitrag in Richtung einer klinischen Anwendung von Deep Learning, zielt auf eine verbesserte Diagnose, und damit letztlich eine verbesserte Gesundheitsversorgung insgesamt.



https://doi.org/10.22032/dbt.51864
Dölker, Eva-Maria; Lau, Stephan; Bernhard, Maria Anne; Haueisen, Jens
Perception thresholds and qualitative perceptions for electrocutaneous stimulation. - In: Scientific reports, ISSN 2045-2322, Bd. 12 (2022), 7335, S. 1-12

Our long-term goal is the development of a wearable warning system that uses electrocutaneous stimulation. To find appropriate stimulation parameters and electrode configurations, we investigate perception amplitude thresholds and qualitative perceptions of electrocutaneous stimulation for varying pulse widths, electrode sizes, and electrode positions. The upper right arm was stimulated in 81 healthy volunteers with biphasic rectangular current pulses varying between 20 and 2000 μs. We determined perception, attention, and intolerance thresholds and the corresponding qualitative perceptions for 8 electrode pairs distributed around the upper arm. For a pulse width of 150 μs, we find median values of 3.5, 6.9, and 13.8 mA for perception, attention, and intolerance thresholds, respectively. All thresholds decrease with increasing pulse width. Lateral electrode positions have higher intolerance thresholds than medial electrode positions, but perception and attention threshold are not significantly different across electrode positions. Electrode size between 15 × 15 mm2 and 40 × 40 mm2 has no significant influence on the thresholds. Knocking is the prevailing perception for perception and attention thresholds while mostly muscle twitching, pinching, and stinging are reported at the intolerance threshold. Biphasic stimulation pulse widths between 150 μs and 250 μs are suitable for electric warning wearables. Within the given practical limits at the upper arm, electrode size, inter-electrode distance, and electrode position are flexible parameters of electric warning wearables. Our investigations provide the basis for electric warning wearables.



https://doi.org/10.1038/s41598-022-10708-9
Köcher, Chris;
Rational, recognizable, and aperiodic partially lossy queue languages. - In: International journal of algebra and computation, ISSN 0218-1967, Bd. 32 (2022), 03, S. 483-528

Partially lossy queue monoids (plq monoids) model the behavior of queues that can non-deterministically forget specified parts of their content at any time. We call the subsets of this monoid partially lossy queue languages (plq languages). While many decision problems on recognizable plq languages are decidable, most of them are undecidable if the languages are rational. In particular, in this monoid the classes of rational and recognizable languages do not coincide. This is due to the fact that the class of recognizable plq languages is not closed under multiplication and iteration. However, we can generate the recognizable plq languages using special rational expressions consisting of the Boolean operations and restricted versions of multiplication and iteration. From these special rational expressions we can also obtain an MSO logic describing the recognizable plq languages. Moreover, we provide similar results for the class of aperiodic languages in the plq monoid.



https://doi.org/10.1142/S0218196722500230
Tomova, Mihaela Todorova; Hofmann, Martin; Mäder, Patrick
SEOSS-Queries - a software engineering dataset for text-to-SQL and question answering tasks. - In: Data in Brief, ISSN 2352-3409, Bd. 42 (2022), 108211, S. 1-11

https://doi.org/10.1016/j.dib.2022.108211
Beliautsou, Aleksandra; Beliautsou, Viktar; Zimmermann, Armin
Colored Petri net modelling and evaluation of drone inspection methods for distribution networks. - In: Sensors, ISSN 1424-8220, Bd. 22 (2022), 9, 3418, S. 1-20

https://doi.org/10.3390/s22093418
Götze, Philipp;
Transactional and analytical data management on persistent memory. - Ilmenau : Universitätsbibliothek, 2022. - 1 Online-Ressource (XII, 144 Seiten, Seite XIII-XXXIV)
Technische Universität Ilmenau, Dissertation 2022

Die zunehmende Anzahl von Smart-Geräten und Sensoren, aber auch die sozialen Medien lassen das Datenvolumen und damit die geforderte Verarbeitungsgeschwindigkeit stetig wachsen. Gleichzeitig müssen viele Anwendungen Daten persistent speichern oder sogar strenge Transaktionsgarantien einhalten. Die neuartige Speichertechnologie Persistent Memory (PMem) mit ihren einzigartigen Eigenschaften scheint ein natürlicher Anwärter zu sein, um diesen Anforderungen effizient nachzukommen. Sie ist im Vergleich zu DRAM skalierbarer, günstiger und dauerhaft. Im Gegensatz zu Disks ist sie deutlich schneller und direkt adressierbar. Daher wird in dieser Dissertation der gezielte Einsatz von PMem untersucht, um den Anforderungen moderner Anwendung gerecht zu werden. Nach der Darlegung der grundlegenden Arbeitsweise von und mit PMem, konzentrieren wir uns primär auf drei Aspekte der Datenverwaltung. Zunächst zerlegen wir mehrere persistente Daten- und Indexstrukturen in ihre zugrundeliegenden Entwurfsprimitive, um Abwägungen für verschiedene Zugriffsmuster aufzuzeigen. So können wir ihre besten Anwendungsfälle und Schwachstellen, aber auch allgemeine Erkenntnisse über das Entwerfen von PMem-basierten Datenstrukturen ermitteln. Zweitens schlagen wir zwei Speicherlayouts vor, die auf analytische Arbeitslasten abzielen und eine effiziente Abfrageausführung auf beliebigen Attributen ermöglichen. Während der erste Ansatz eine verknüpfte Liste von mehrdimensionalen gruppierten Blöcken verwendet, handelt es sich beim zweiten Ansatz um einen mehrdimensionalen Index, der Knoten im DRAM zwischenspeichert. Drittens zeigen wir unter Verwendung der bisherigen Datenstrukturen und Erkenntnisse, wie Datenstrom- und Ereignisverarbeitungssysteme mit transaktionaler Zustandsverwaltung verbessert werden können. Dabei schlagen wir ein neuartiges Transactional Stream Processing (TSP) Modell mit geeigneten Konsistenz- und Nebenläufigkeitsprotokollen vor, die an PMem angepasst sind. Zusammen sollen die diskutierten Aspekte eine Grundlage für die Entwicklung noch ausgereifterer PMem-fähiger Systeme bilden. Gleichzeitig zeigen sie, wie Datenverwaltungsaufgaben PMem ausnutzen können, indem sie neue Anwendungsgebiete erschließen, die Leistung, Skalierbarkeit und Wiederherstellungsgarantien verbessern, die Codekomplexität vereinfachen sowie die ökonomischen und ökologischen Kosten reduzieren.



https://doi.org/10.22032/dbt.51870
Katal, Negin; Rzanny, Michael Carsten; Mäder, Patrick; Wäldchen, Jana
Deep learning in plant phenological research: a systematic literature review. - In: Frontiers in plant science, ISSN 1664-462X, Bd. 13 (2022), 805738, S. 1-18

Climate change represents one of the most critical threats to biodiversity with far-reaching consequences for species interactions, the functioning of ecosystems, or the assembly of biotic communities. Plant phenology research has gained increasing attention as the timing of periodic events in plants is strongly affected by seasonal and interannual climate variation. Recent technological development allowed us to gather invaluable data at a variety of spatial and ecological scales. The feasibility of phenological monitoring today and in the future depends heavily on developing tools capable of efficiently analyzing these enormous amounts of data. Deep Neural Networks learn representations from data with impressive accuracy and lead to significant breakthroughs in, e.g., image processing. This article is the first systematic literature review aiming to thoroughly analyze all primary studies on deep learning approaches in plant phenology research. In a multi-stage process, we selected 24 peer-reviewed studies published in the last five years (2016-2021). After carefully analyzing these studies, we describe the applied methods categorized according to the studied phenological stages, vegetation type, spatial scale, data acquisition- and deep learning methods. Furthermore, we identify and discuss research trends and highlight promising future directions. We present a systematic overview of previously applied methods on different tasks that can guide this emerging complex research field.



https://doi.org/10.3389/fpls.2022.805738
Pandey, Sandeep; Teutsch, Philipp; Mäder, Patrick; Schumacher, Jörg
Direct data-driven forecast of local turbulent heat flux in Rayleigh-Bénard convection. - In: Physics of fluids, ISSN 1089-7666, Bd. 34 (2022), 4, 045106, S. 045106-1-045106-14

A combined convolutional autoencoder-recurrent neural network machine learning model is presented to directly analyze and forecast the dynamics and low-order statistics of the local convective heat flux field in a two-dimensional turbulent Rayleigh-Bénard convection flow at Prandtl number Pr=7 and Rayleigh number Ra=10^7. Two recurrent neural networks are applied for the temporal advancement of turbulent heat transfer data in the reduced latent data space, an echo state network, and a recurrent gated unit. Thereby, our work exploits the modular combination of three different machine learning algorithms to build a fully data-driven and reduced model for the dynamics of the turbulent heat transfer in a complex thermally driven flow. The convolutional autoencoder with 12 hidden layers is able to reduce the dimensionality of the turbulence data to about 0.2% of their original size. Our results indicate a fairly good accuracy in the first- and second-order statistics of the convective heat flux. The algorithm is also able to reproduce the intermittent plume-mixing dynamics at the upper edges of the thermal boundary layers with some deviations. The same holds for the probability density function of the local convective heat flux with differences in the far tails. Furthermore, we demonstrate the noise resilience of the framework. This suggests that the present model might be applicable as a reduced dynamical model that delivers transport fluxes and their variations to coarse grids of larger-scale computational models, such as global circulation models for atmosphere and ocean.



https://doi.org/10.1063/5.0087977