Gesamtliste der Publikationen

Anzahl der Treffer: 997
Erstellt: Wed, 17 Jul 2024 23:05:38 +0200 in 0.0558 sec


Fern, Florian;
Metrologie in fünfachsigen Nanomess- und Nanopositioniermaschinen. - Ilmenau : Universitätsbibliothek, 2020. - 1 Online-Ressource (VIII, 120 Seiten)
Technische Universität Ilmenau, Dissertation 2020

Die vorliegende Arbeit stellt ein neuartiges Konzept für eine fünfachsige Nanomessmaschine zur Messung von Formabweichungen auf stark gekrümmten Asphären oder Freiform-Flächen vor. Bis zu einem Anstieg von bis zu 60˚ der Messobjektoberfläche kann der Sensor orthogonal zu dieser ausgerichtet werden. Unter vollständiger Einhaltung des Abbe-Komparatorprinzips wird das Messobjekt translatorisch in einem Bereich von 25mm 25mm 5mm relativ zu dem um zwei Rotationsachsen drehbaren Sensor bewegt. Die Messachsen der translatorischen Positionsmessung schneiden sich im so genannten Abbe-Punkt. Dieser Abbe-Punkt ist gleichzeitig auch der Antastpunkt des Sensors und der konstante Momentanpol der beiden Rotationsachsen zur Sensorrotation, die sich rechtwinklig in dem Abbe-Punkt schneiden. Zur Bestimmung der zufälligen und systematischen Positionsabweichungen des Sensors in Folge seiner Rotation wird ein Referenzmesssystem vorgestellt. Dieses besteht aus drei fest mit dem Sensor verbundenen, kartesisch angeordneten Fabry-Pérot-Interferometern, die kontinuierlich den Abstand des Sensors zu der Innenfläche einer Referenzhemisphäre messen. Die Messstrahlen der Fabry-Pérot-Interferometer schneiden sich dabei virtuell im Abbe-Punkt. Um die Formabweichung dieser Referenzhemisphäre zu bestimmen, wird ein in-situ-Kalibrierverfahren beschrieben, das die Bestimmung der Formabweichung mit den im System vorhanden Sensoren im Einbauzustand erlaubt. Dazu wird der Sensor durch einen Kugelreflektor im Abbe-Punkt (Kugellinse n=2) ersetzt. Dessen Positionsabweichung wird während der Rotation gemessen und zur Bestimmung der Formabweichung der Referenzhemisphäre genutzt. Basierend auf diesen Erkenntnissen wurde ein Prototyp des vorgestellten Konzepts aufgebaut und die Funktion des Referenzmesssystems verifiziert. Über einen großen translatorischen Verschiebungsbereich von 80 [my]m, kann die Verschiebung des Antastpunktes mit Hilfe des Referenzmesssystems auf +-200nm erfasst werden. Eine Wiederholungsmessung zwischen zwei Stellungen des Rotationssystems zeigte, dass die Antastpunktposition mit einer maximalen Abweichung von 27nm bestimmt werden kann. Die ausführliche theoretische Messunsicherheitsbetrachtung auf Grundlage von sechs Untermodellen ergibt eine Messunsicherheit für die Bestimmung des Antastpunktes von maximal 18nm p = 68%.



https://www.db-thueringen.de/receive/dbt_mods_00045605
Ortlepp, Ingo;
Mikrointerferometer auf Basis von interferenzoptischen Stehende-Welle-Sensoren. - Ilmenau : Universitätsbibliothek, 2020. - 1 Online-Ressource (xi, 161 Seiten)
Technische Universität Ilmenau, Dissertation 2020

Seit dem Michelson-Morley-Experiment im Jahr 1887 werden Interferometer erfolgreich in Forschung und Industrie für verschiedenste Aufgaben eingesetzt. Laserinterferometer sind heute hochentwickelte und enorm leistungsfähige Geräte mit beachtlichen Parametern hinsichtlich Messauflösung und Messunsicherheit. Diese Leistungsfähigkeit jedoch beruht auf einem äußerst komplexen Aufbau mit einer großen Anzahl optischer Präzisionskomponenten, weshalb klassische Laserinterferometer kostenintensive Messmittel nahezu ausschließlich für Aufgaben der Präzisionsmesstechnik mit höchsten Anforderungen darstellen. Gemeinsam mit der begrenzten Miniaturisierbarkeit von diskret aufgebauten Interferometern resultiert daraus eine Einschränkung der möglichen Einsatzgebiete. Das Stehende-Welle-Interferometer stellt einen neuen Interferometeransatz dar, mit dem die genannten Einschränkungen überwunden werden können. Das Konzept basiert auf einer optischen stehenden Welle, welche im Raum vor einem Spiegel bei senkrechter Reflexion eines Laserstrahls in sich selbst entsteht. Die Intensitätsminima und -maxima der stehenden Welle sind räumlich an den Spiegel gekoppelt und können mit einem dünnen, transparenten Photosensor detektiert werden. Eine Zählung der den Sensor bei einer Spiegelverschiebung durchlaufenden Extrema ermöglicht bei bekannter Wellenlänge der Laserquelle eine Bestimmung des Verschiebewegs des Spiegels. Da sich der genannte Sensor im optischen Strahlengang befindet, beeinflusst dieser direkt die stehende Welle. Für den Sensor existieren daher besondere Anforderungen hinsichtlich dessen Dicke, Transparenz, Reflexionsgrad und Ebenheit. Im Rahmen dieser Arbeit werden entsprechende Stehende-Welle-Sensoren für hochdynamische Messungen und verschiedene optische Aufbauten entwickelt und untersucht. Die Sensoren basieren auf kommerziellen SOI-Wafern und können mit üblichen Halbleitertechnologien hergestellt werden. Bei der Entwicklung liegen die Schwerpunkte auf einer hohen Grenzfrequenz, auf der Entspiegelung der Sensoren und auf Verfahren zur mechanischen Stabilisierung der äußerst dünnen photoaktiven Schicht. Die elektrischen, optischen und elektrooptischen Eigenschaften der Sensoren werden umfangreich untersucht und deren Einsatz in Homodyn-, Heterodyn - und Interferometeraufbauten mit Phasenmodulation nachgewiesen.



https://www.db-thueringen.de/receive/dbt_mods_00045571
Rogge, Norbert; Lin, Shan; Rothleitner, Christian; Vasilyan, Suren
Excitation frequency dependent deviations during the "Velocity Mode" of BL measurements in the Planck-Balance. - In: Electrical and electronic measurements promote industry 4.0, (2020), S. 198-202

Lin, Shan; Rothleitner, Christian; Rogge, Norbert
Amplitude estimation using three-parameter sine fitting algorithm in the Planck-Balance. - In: Electrical and electronic measurements promote industry 4.0, (2020), S. 77-80

Meister, Andreas;
Ein Beitrag zur Modellbildung und Steuerung der Nanopositionier- und Nanomessmaschine 200. - Ilmenau, 2020. - XV, 112 Seiten
Technische Universität Ilmenau, Dissertation 2020

Stetiger Fortschritt im Bereich der Digitalisierung und Informationsverarbeitung erfordern immer feinere optische und Halbleiterstrukturen. Diese sind nur durch immer hochauflösendere Fertigungsverfahren herstellbar. Damit steigt die Bedeutung hochpräziser Nanopositionier- und Nanomesstechnik. Sie wird einerseits für die Überprüfung hergestellter Strukturen, als auch für die eigentliche Fertigung benötigt. Zusätzlich benötigen komplexere Strukturen mehr Bauraum. Somit steigt der Bedarf an Nanopositionier- und Nanomessmaschinen mit großem Bewegungsbereich in Kombination mit höchstmöglicher Präzision. Mit Arbeitsbereichen von mehreren hundert Millimetern sowie Mess- und Positionierauflösungen im Nanometerbereich schließen sie die Lücke zwischen Koordinatenmessmaschinen und Rastersondenmikroskopen. Die Nanopositionier- und Nanomessmaschine 200 ist einer der fortschrittlichsten Vertreter. Ihr einzigartiger Aufbau ermöglicht kleinste Messunsicherheiten von unter 30 nm in einem Arbeitsbereich von 200 x 200 x 25 mm^3. Mess- und Fabrikationsaufgaben können sowohl bei Umgebungsdruck, als auch im technischen Vakuum erfolgen. Das dafür realisierte Antriebskonzept stellt besondere Aufgaben an die Steuer- und Regelungsalgorithmen. In der vorliegenden Arbeit werden neue Modelle der Antriebssysteme und bewegten Achsen entworfen und weiterentwickelt. Durch die spezielle Anordnung der Baugruppen für die vertikale Bewegung führen Rotationen zu erheblicher Wechselwirkung mit allen anderen Messachsen. Ein präzises Bewegungsmodell ermöglicht eine signifikante Verbesserung der Regelgüte. Daher wird das bisherige plattformbezogene Reibungsmodell durch ein führungsbezogenes ersetzt. Restfehler zwischen mathematischer Beschreibung und Messung können somit deutlich reduziert werden. Weiterhin wird das Modell um verschiedene Ansätze erweitert, die einen Einfluss der Kippwinkel berücksichtigen. Diese werden mit Messdaten abgeglichen und bewertet. Aufgrund auftretender Rastkräfte sind positionsabhängig hohe Antriebsströme in den planaren Antrieben erforderlich. Die vorhandenen Kühlsysteme können nicht hinreichend schnell auf die Änderungen der in Wärme umgesetzten Verlustleistung reagieren. Dadurch entstehende Temperaturschwankungen sind beim Betrieb in Vakuum grundsätzlich zu vermeiden. Aufbauend auf einer Kompensation der Rastkräfte wird eine Strategie entwickelt, um die Leistungsaufnahme auf einem möglichst niedrigen Niveau zu stabilisieren. Hierfür werden verschiedene Methoden vorgeschlagen und untersucht. Zur Vermeidung von Störkräften werden minimale Schwankungen der Leistungsaufnahme zugelassen, die so kurzfristig ausgeglichen werden, dass keine relevanten Temperaturschwankungen entstehen.



Manske, Eberhard; Fröhlich, Thomas; Füßl, Roland; Ortlepp, Ingo; Mastylo, Rostyslav; Blumröder, Ulrike; Dontsov, Denis; Kühnel, Michael; Köchert, Paul
Progress of nanopositioning and nanomeasuring machines for cross-scale measurement with sub-nanometre precision. - In: Measurement science and technology, ISSN 1361-6501, Volume 31 (2020), number 8, 085005, Seite 1-8

https://doi.org/10.1088/1361-6501/ab848c
Bischoff, Jörg; Pahl, Tobias; Lehmann, Peter; Manske, Eberhard
Model-based dimensional optical metrology. - In: Optics and Photonics for Advanced Dimensional Metrology, (2020), S. 113520P-1-113520P-13

https://doi.org/10.1117/12.2554517
Belkner, Johannes; Hofmann, Martin; Kirchner, Johannes; Manske, Eberhard
Demonstration of aberration-robust high-frequency modulated Differential Confocal Microscopy with an oscillating Pinhole. - In: Optics and Photonics for Advanced Dimensional Metrology, (2020), S. 113520N-1-113520N-10

Metrological stages such as the nano-positioning and nano-measurement machine (NPMM) can position single-digit nanometer accurately on centimeter working volumes. However, their measurement system requires a feedback to the arbitrary shaped specimen by another probe. The differential confocal microscopy (DCM) offers the possibility to have a sensitivity down to that single-digit nanometers but suffers from noise and aberration. Recently the principle of the LockIn filtering could be successfully adapted in DCM and therefore achieved a high SNR. Contrary to the there employed acoustically driven tunable GRIN lens (TAG lens) at the objective, we demonstrate a microelectromechanical system (MEMS), an AFM cantilever, as an ultrafast oscillating pinhole in front of the detector. Its first resonance at 96kHz makes it very competitive regarding acquisition speed, but the low oscillation amplitude lowers contrast. By principle inheriting the possibility to compensate a change in reflectivity, we present another advancement for the evaluation of the resulting differential signal to make it robust against sample induced systematic depth errors, e.g. a tilt-angle. This could be advantageous for DCM with static beam-paths, as well. Potentially, the highest improvement can be achieved in conjunction with the NPMMs highly accurate measurement interferometers, because the residual error for the depth of a specimen under the influence of varying aberration is kept below 20nm.



https://doi.org/10.1117/12.2555558
Bischoff, Jörg; Mastylo, Rostyslav; Manske, Eberhard
Scanning wavefront detection coherent Fourier scatterometry (SCFS). - In: Optics and Photonics for Advanced Dimensional Metrology, (2020), S. 1135214-1-1135214-11

https://doi.org/10.1117/12.2554526
Manske, Eberhard; Jäger, Gerd; Mastylo, Rostyslav; Dontsov, Denis
Nanopositioning and nanomeasuring machine for multi-sensor applications. - In: Measuring Equipment and Metrology, ISSN 2617-846X, Bd. 81 (2020), 2, S. 17-24

In micro- and nanotechnology, the demands placed on measurement technology are increasing. The structures to be measured are becoming more complex with smaller structure widths, increasingly larger surface regions, and thousands of inspection features. To solve the problems, it has become desirable and even necessary to combine multi-sensor technology with high precision nanopositioning and nano measuring technology. The Nanopositioning and Nanomeasuring Machine NMM-1 with a measuring range of 25 mm × 25 mm × 5 mm and sub-nanometer resolution allow the application of several optical, tactile and atomic force probes. The combination of several sensor technologies in a multi-sensor approach for application with the NMM-1 is demonstrated.



https://doi.org/10.23939/istcmtm2020.02.017