Gesamtliste der Publikationen

Anzahl der Treffer: 997
Erstellt: Wed, 17 Jul 2024 23:05:38 +0200 in 0.0634 sec


Sasiuk, Taras; Fröhlich, Thomas; Theska, René; Oliveira, Rafael Soares
A novel approach to generate a static torque in the range from 1 mN&hahog;m to 1 N&hahog;m :
Ein neuartiger Ansatz zur Erzeugung eines statischen Drehmoments im Bereich von 1 mN&hahog;m bis 1 N&hahog;m. - In: Technisches Messen, ISSN 2196-7113, Bd. 88 (2021), 2, S. 103-113

Drehmomentsensoren mit einem kleinen Messbereich bis zu 1 N&hahog;m sind Teil verschiedener Präzisionsgeräte, wie beispielsweise Roboter oder Werkzeuge für medizinische Operationen und Nanofabrikationsgeräte. Die Drehmomentsensoren benötigen häufig eine Kalibrierung, für die eine Rückführbarkeit nachgewiesen werden muss. Gemäß gesetzlichem Auftrag haben die nationalen metrologischen Institute die Aufgabe, die Drehmomenteinheiten zu realisieren und die geforderte Rückführbarkeit zu ermöglichen. Dieser Artikel zeigt, wie nach einem neuen Prinzip statische Drehmomente im Bereich von 1 mN&hahog;m bis 1 N&hahog;m erzeugt werden können. Ziel der laufenden Arbeiten war die Umsetzung dieser neuen Idee der Drehmomenterzeugung zur Schaffung einer neuen, präziseren Drehmoment-Normalmesseinrichtung. Die Leistungsfähigkeit der neuen Methode wurde mit der Erzeugung von statischen Drehmomenten nach dem Stand der Technik (PTB-Drehmoment-Normalmesseinrichtung) verglichen.



https://doi.org/10.1515/teme-2020-0090
Vasilyan, Suren; López, Marco; Rogge, Norbert; Pastuschek, Marcel; Lecher, Holger; Manske, Eberhard; Kück, Stefan; Fröhlich, Thomas
Revisiting the limits of photon momentum based optical power measurement method, employing the case of multi-reflected laser beam. - In: Metrologia, ISSN 1681-7575, Bd. 58 (2021), 1, 015006, insges. 13 S.

In this work, we review the viability and precision of the photon-momentum-based optical power measurement method that employs an amplification effect caused by a multi-reflected laser beam trapped in an optical cavity. Measuring the total momentum transfer of the absorbed and re-emitted photons from a highly reflective surface (reflection of the laser beam from an optical mirror) as a force provides the possibility of measuring the optical power with direct traceability to SI units. Trial measurements were performed at two different metrology laboratories: the laboratory for mass/force at the Technical University of Ilmenau, and the clean room laser radiometry laboratory at PTB, with a portable force measurement setup consisting of two electromagnetic force compensation balances. We compared the results of the optical power measurements performed with the force measurement setup, via the photon-momentum-based method, with those performed using a calibrated reference standard detector traceable to PTB's primary standard for optical power, the cryogenic radiometer. The comparison was carried out for an optical power range between 1 W and 10 W at a wavelength of 532 nm, which corresponds to a force of approximately 2000 nN at the upper limit, yielding approximately 2.3% relative standard uncertainty in the case of 33 reflections. Thus, conflating the high-precision force metrology technique at [my]N to nN levels with the optical setup required to achieve specular multi-reflection configuration of the laser beam, where a macroscopic optical cavity with ultra-high reflective mirrors (>99.995%) can adjustably be suspended from the force sensors, depending on required geometry of reflections, we show that the uncertainty of the optical power measurements upon further increase of the nominally applied optical power, the number of laser beam reflections, or the reflectivity coefficient of the mirrors can be markedly reduced.



https://doi.org/10.1088/1681-7575/abc86e
Wedrich, Karin; Darnieder, Maximilian; Vierzigmann, Eric; Barth, Alexander; Theska, René; Strehle, Steffen
Conceptual design of a microscale balance based on force compensation. - In: Microactuators, microsensors and micromechanisms, (2021), S. 103-114

Macroscopic electromagnetic force compensation (EMFC) balances are well established but were not yet demonstrated within microsystems. Hence, in this paper, the concept and the design of a micro fabricated force compensation balance is presented. The implemented concentrated compliance mechanism in form of flexure hinges enables motion with high precision, which is combined with a force compensation mechanism. The concept of force compensation promises a high measurement range, which is expected to be up to 0.5 mN, while still enabling a high resolution of less than 8 nN. The developed dynamic model of the miniaturized balance is used for the design of a PID-controller strategy. Here, continuous and time-discrete controller approaches are compared. The time-discrete controller with realistic delay times, leads to an accuracy of the controller, which is better than the expected accuracy of the integrated capacitive position sensor.



https://doi.org/10.1007/978-3-030-61652-6_9
Oertel, Erik; Manske, Eberhard
Radius and roundness measurement of micro spheres based on a set of AFM surface scans. - In: Measurement science and technology, ISSN 1361-6501, Bd. 32 (2021), 4, 044005, S. 1-11

Micro coordinate measuring machines have been developed for the traceable characterisation of small complex parts, due to the demand in research and industry. These machines require geometrically well characterised probing spheres of ever smaller radii. Currently, there is no established procedure for the measurement of such spheres below radii of 500 [my]m. In this paper we, therefore, propose and investigate an approach which is based on a set of AFM surface scans in conjunction with a stitching algorithm. The strategy was implemented on a nano measuring machine and investigated on a ruby sphere with a radius of 150 [my]m. Although the strategy can generally be applied to the characterisation of a full sphere, we limit ourselves to the measurement of one greate circle (equator). The technique enables the measurement of micro spheres with a high lateral and vertical resolution. The mean radius of the ruby sphere was measured with a standard deviation of 3.7 nm over 6 repetitions. As our experiments have shown, the measurement procedure is at the moment mainly influenced by the shape of the AFM tip which requires further attention.



https://doi.org/10.1088/1361-6501/abcff4
Fern, Florian; Füßl, Roland; Eichfelder, Gabriele; Manske, Eberhard; Kühnel, Michael
Coordinate transformation and its uncertainty under consideration of a non-orthogonal coordinate base. - In: Measurement science and technology, ISSN 1361-6501, Bd. 32 (2021), 4, 045001, insges. 6 S.

Nanopositioning and nanomeasuring machines are 3D coordinate measuring systems with nanometer precision at measurement volumes in the cubic centimeter range. The coordinate base is formed by an interferometer system with a common mirror corner. The orthogonality deviations of the mirror corner require a coordinate transformation of the measuring axes. The uncertainty of the coordinate transformation must be taken into account in the overall measurement uncertainty budget. Starting from a complete transformation model, the result of model simplications on the transformation behaviour is analysed and discussed.



https://doi.org/10.1088/1361-6501/aba3f5
Belkner, Johannes; Döll, Joachim; Koppka, Christian; Breiter, Manuela; Hofmann, Martin; Ortlepp, Ingo; Gerhardt, Uwe; Strehle, Steffen; Manske, Eberhard
An electrothermally actuated membrane as oscillating pinhole for the high-frequent modulation of light. - In: DGaO-Proceedings, ISSN 1614-8436, Bd. 121 (2020), B37, insges. 2 S.

We present theory, processing steps and first results for a thermally actuated Aluminiumnitride-Platinum membrane with a resonant frequency of the first mode at around 100 kHz and resonant displacements at its center of around 30 µm. The radial-symmetric membrane is broadband opaque for wavelengths from visual light and beyond. An exception is a small pinhole of various diameters below 3 µm in its center. Through thermally induced asymmetric stress inside the multilayer, the clamped membrane bends out. The pinhole in its center will be displaced parallel to the optical axis.The intended use for such a membrane is to replace the traditional confocal pinhole in the detection path of a microscope. Applying a stable known resonant modulation on an acquired signal enables a lock-in principle for a differential confocal depth sensing as shown in [1]. The advantage over the employed tunable acoustic gradient lens (TAG lens) there, is the reduced size, the simplicity of the arrangement and constant illumination properties on the sample.



https://nbn-resolving.org/urn:nbn:de:0287-2020-B037-6
Schienbein, Ralf; Theska, René; Fern, Florian; Füßl, Roland; Supreeti, Shraddha
Grundlegende Untersuchungen zur Entwicklung von fünfachsigen Nanopositioniermaschinen für Mess- und Fertigungszwecke. - In: Jahrbuch Optik und Feinmechanik, ISSN 0075-272X, Bd. 66 (2020), S. 67-92

Rogge, Norbert; Vasilyan, Suren; Fröhlich, Thomas
Selbstkalibrierende Präzisionswaagen für den industriellen Einsatz : Abschlussbericht Projekt VIP+ Planck-Waage : Berichtszeitraum: 01.01.2017-31.12.2019. - [Ilmenau] : [Technische Universität Ilmenau]. - 1 Online-Ressource (11 Seiten, 769,99 KB)Förderkennzeichen BMBF 03VP02851

https://doi.org/10.2314/KXP:1756259070
Vasilyan, Suren; Rogge, Norbert; Manske, Eberhard; Fröhlich, Thomas
Generation of static and dynamic small calibration forces and their measurements by electromagnetic force compensation balance. - In: Acta IMEKO, ISSN 2221-870X, Bd. 9 (2020), 5, S. 113-117

The paper presents some of the results of the static and dynamic force measurements at 100 nN to sub-10 [my]N ranges which are generated due the photon-momentum. The force sensor with resolution about 20 nN and operating in differential measurement mode is developed by two electromagnetic force compensation balances. In order to generate these calibration forces, CW lasers with different operational modes, power levels, and wavelengths are used. Multi-reflection configuration of the laser beam inside the macroscopic cavity with highly reflective mirrors are used to test and variate the total amount of the forces.



https://doi.org/10.21014/acta_imeko.v9i5.951
Rogge, Norbert; Rothleitner, Christian; Lin, Shan; Vasilyan, Suren; Fröhlich, Thomas; Härtig, Frank; Knopf, Dorothea
Error sources in the force mode of the "PB2" Planck-Balance. - In: Acta IMEKO, ISSN 2221-870X, Bd. 9 (2020), 5, S. 53-57

The PB2 Planck-Balance is a table-top Kibble balance, that is designed for the calibration of class E2 weights in a range of 1 mg up to 100 g. This work presents typical systematic errors which have to be considered during the calibration and will show results for measurements with small masses.



https://doi.org/10.21014/acta_imeko.v9i5.938