Zeitschriftenaufsätze ab 2018

Anzahl der Treffer: 1679
Erstellt: Sun, 30 Jun 2024 22:28:27 +0200 in 0.1053 sec


Herrmann, Andreas; Assadi, Achraf Amir; Lachheb, Raoula; Zekri, Mohamed; Erlebach, Andreas; Damak, Kamel; Maâlej, Ramzi; Sierka, Marek; Rüssel, Christian
The effect of glass structure and local rare earth site symmetry on the optical properties of rare earth doped alkaline earth aluminosilicate glasses. - In: Acta materialia, ISSN 1873-2453, Bd. 249 (2023), 118811

Understanding the connection of molecular structure and optical properties of rare earth doped luminescent materials is essential for fabrication of state-of-the-art active laser media. On the other hand, rare earth ions can be used as a probe ion for the molecular structure of the host material if the structure-property correlations are known. Therefore, this work combines molecular dynamics simulations, Judd-Ofelt theory and UV-vis-NIR absorption spectroscopy including the behavior of the structure-sensitive hypersensitive absorption transitions of Er3+ to expand the knowledge on the local molecular structure in the immediate vicinity of the doped rare earth ions in dependence of glass composition. For this purpose, glasses of the compositions (35-x) BaO &hahog; x MgO &hahog; 10 Al2O3 &hahog; 55 SiO2 (mol%) (x = 0, 7.5, 15, 25, 35) and (20-x) BaO &hahog; x MgO &hahog; 20 Al2O3 &hahog; 60 SiO2 (mol%) (x = 0, 10, 20), doped with 2 × 10^20 ions/cm^3 Er3+ were prepared and analyzed. Clear differences in the absorption spectra between glasses of different BaO/MgO ratios, i.e. different network modifier field strengths, and different network modifier oxide to Al2O3 ratios are found and discussed in detail. Glasses with high BaO concentrations and high network modifier oxide to Al2O3 ratios provide lower rare earth coordination numbers with oxygen in general but higher coordination probabilities with non-bridging oxygen, which results in notably increased splitting of the optical transitions of the doped rare earth ions and higher hypersensitivity / lower local site symmetry for the doped rare earth ions in the investigated compositions. Based on our results and results from other publications the local rare earth site symmetry in glasses can in general be correlated with the rare earth coordination number.



https://doi.org/10.1016/j.actamat.2023.118811
Schricker, Klaus; Schmidt, Leander; Friedmann, Hannes; Bergmann, Jean Pierre
Gap and force adjustment during laser beam welding by means of a closed-loop control utilizing fixture-integrated sensors and actuators. - In: Applied Sciences, ISSN 2076-3417, Bd. 13 (2023), 4, 2744, S. 1-17

The development of adaptive and intelligent clamping devices allows for the reduction of rejects and defects based on weld discontinuities in laser-beam welding. The utilization of fixture-integrated sensors and actuators is a new approach, realizing adaptive clamping devices that enable in-process data acquisition and a time-dependent adjustment of process conditions and workpiece position by means of a closed-loop control. The present work focused on sensor and actuator integration for an adaptive clamping device utilized for laser-beam welding in a butt-joint configuration, in which the position and acting forces of the sheets to be welded can be adjusted during the process (studied welding speeds: 1 m/min, 5 m/min). Therefore, a novel clamping system was designed allowing for the integration of inductive probes and force cells for obtaining time-dependent data of the joint gap and resulting forces during welding due to the displacement of the sheets. A novel automation engineering concept allowed the communication between different sensors, actuators and the laser-beam welding setup based on an EtherCAT bus. The subsequent development of a position control and a force control and their combination was operated with a real time PC as master in the bus system and proved the feasibility of the approach based on proportional controllers. Finally, the scalability regarding higher welding speeds was demonstrated.



https://doi.org/10.3390/app13042744
Schwarz, Elisabeth Birgit; Bleier, Fabian; Günter, Friedhelm; Mikut, Ralf; Bergmann, Jean Pierre
Temperature-based quality analysis in ultrasonic welding of copper sheets with microstructural joint evaluation and machine learning methods. - In: Welding in the world, ISSN 1878-6669, Bd. 67 (2023), 6, S. 1437-1448

Ultrasonic metal welding (USMW) is a highly attractive joining technology due to high energy efficiency and solid-state joint formation. Various joining solutions for conductor materials can be realized with USMW. Still, a big challenge for complex industrial applications is an adequate process monitoring that allows to cope with inevitable and complex process fluctuations. In this work, the suitability of contactless temperature measurements for process monitoring of copper sheet welding is examined and compared with the suitability of vibration measurements by means of machine learning methods. Different sensor signals acquired during welding on a metrological test rig are used for predicting the tensile shear strength of the joint. Results show that quality predictions based on temperatures exceed the state-of-the-art monitoring based on the welding energy. Yet, solely temperature-based predictions are exceeded by quality predictions based on either welding machine signals or tool vibration measurements. To further explore temperature-based quality analysis, joint microstructure analyses are carried out. These reveal concurring joint formation mechanisms associated with the mechanical and thermal process domains. To finally cover both domains in quality prediction, a sensor-fusion-based regression model is set up relying on vibration and temperature measurements. This fusion model exceeds all previously considered regression models with a mean absolute percentage error of 7.4% on the test data set. These results stress the importance of both process domains and suggest the combination of temperature and vibration measurements as a good starting point for future industrial monitoring of USMW processes.



https://doi.org/10.1007/s40194-023-01463-0
Labus Zlatanovic, Danka; Bergmann, Jean Pierre; Balos, Sebastian; Hildebrand, Jörg; Bojanic-Sejat, Mirjana; Goel, Saurav
Effect of surface oxide layers in solid-state welding of aluminium alloys - review. - In: Science and technology of welding and joining, ISSN 1743-2936, Bd. 28 (2023), 5, S. 331-351

This review sheds novel insights on the residual oxide behaviour of solid-state weld joints of aluminium alloys. Understanding the influence of oxides on the aluminium surface before and during welding, its impact on the weld structure and possible solutions for reducing its impact were addressed. The solid-state techniques most relevant to the transportation sector namely, diffusion bonding, friction stir spot welding and ultrasonic welding were surveyed, analysed and reviewed. During this analysis, the implication of the presence of oxides on aluminium substrate affecting the metallurgical characteristics of the weld joints was reviewed. Visible defects such as voids, delamination, kissing bond and hook defects, and problems associated with these defects were analysed and few suggestions are made to partially overcome these issues.



https://doi.org/10.1080/13621718.2023.2165603
Labus Zlatanovic, Danka; Eigenbrod, Hella; Stötzel, Martin; Bergmann, Jean Pierre; Hildebrand, Jörg
Effects of cryogenic cooling on machining of acrylonitrile-butadiene rubber. - In: Journal of manufacturing processes, ISSN 2212-4616, Bd. 90 (2023), S. 429-442

The basic idea of cryogenic machining of elastomers is to lower the process temperature under glass transition temperature, causing the transformation of the viscoelastic properties of elastomers into brittle with better machinability outcomes. However, because of the heat generated by plastic deformation and chip formation in the primary shear zone and friction between the tool and the workspace, even with cryogenic cooling, the resulting temperature in the cutting area is often higher than the glass transition temperature. As a result, it can cause a partially rubbery state of the workpiece. In this paper, the effect of cryogenic cooling on the milling of acrylonitrile-butadiene rubber was analysed. Three different cooling setups, namely, indirect, direct and flow cooling, were proposed and their influence on temperature distribution in the cutting zone was studied in conjunction with different tool geometries and parameters (depth of cut, rotational speed, and feed rate). Direct cooling provides the best-resulting temperature distribution with the lowest surface roughness (1.27 to 1.47 μm) as it acts as a lubricant between the tool and workpiece and cools the tool and workpiece simultaneously.On the other hand, increasing the depth of cut and rotational speed also increases surface roughness. The best results show samples with grooves obtained with a rotational speed of 5000 rpm, depth of cut 0.25 mm and feed rates between 75 and 300 mm/min with surface roughness between 0.86 and 1.29 μm. Those samples show clean grooves with sharp edges, minimal surface roughness and geometric deviation, with defined ductile chip formation.



https://doi.org/10.1016/j.jmapro.2023.02.027
Mosayebi Samani, Mohsen; Agboada, Desmond; Mutanen, Tuomas P.; Haueisen, Jens; Kuo, Min-Fang; Nitsche, Michael
Transferability of cathodal tDCS effects from the primary motor to the prefrontal cortex: a multimodal TMS-EEG study. - In: Brain stimulation, ISSN 1876-4754, Bd. 16 (2023), 2, S. 515-539

Neurophysiological effects of transcranial direct current stimulation (tDCS) have been extensively studied over the primary motor cortex (M1). Much less is however known about its effects over non-motor areas, such as the prefrontal cortex (PFC), which is the neuronal foundation for many high-level cognitive functions and involved in neuropsychiatric disorders. In this study, we, therefore, explored the transferability of cathodal tDCS effects over M1 to the PFC. Eighteen healthy human participants (11 males and 8 females) were involved in eight randomized sessions per participant, in which four cathodal tDCS dosages, low, medium, and high, as well as sham stimulation, were applied over the left M1 and left PFC. After-effects of tDCS were evaluated via transcranial magnetic stimulation (TMS)-electroencephalography (EEG), and TMS-elicited motor evoked potentials (MEP), for the outcome parameters TMS-evoked potentials (TEP), TMS-evoked oscillations, and MEP amplitude alterations. TEPs were studied both at the regional and global scalp levels. The results indicate a regional dosage-dependent nonlinear neurophysiological effect of M1 tDCS, which is not one-to-one transferable to PFC tDCS. Low and high dosages of M1 tDCS reduced early positive TEP peaks (P30, P60), and MEP amplitudes, while an enhancement was observed for medium dosage M1 tDCS (P30). In contrast, prefrontal low, medium and high dosage tDCS uniformly reduced the early positive TEP peak amplitudes. Furthermore, for both cortical areas, regional tDCS-induced modulatory effects were not observed for late TEP peaks, nor TMS-evoked oscillations. However, at the global scalp level, widespread effects of tDCS were observed for both, TMS-evoked potentials and oscillations. This study provides the first direct physiological comparison of tDCS effects applied over different brain areas and therefore delivers crucial information for future tDCS applications.



https://doi.org/10.1016/j.brs.2023.02.010
Grunert, Malte; Bohm, Sebastian; Honig, Hauke; Wang, Dong; Lienau, Christoph; Runge, Erich; Schaaf, Peter
Structural and optical properties of gold nanosponges revealed via 3D nano-reconstruction and phase-field models. - In: Communications materials, ISSN 2662-4443, Bd. 4 (2023), 20, S. 1-13

Nanosponges are subject of intensive research due to their unique morphology, which leads among other effects to electrodynamic field localization generating a strongly nonlinear optical response at hot spots and thus enable a variety of applications. Accurate predictions of physical properties require detailed knowledge of the sponges’ chaotic nanometer-sized structure, posing a metrological challenge. A major goal is to obtain computer models with equivalent structural and optical properties. Here, to understand the sponges’ morphology, we present a procedure for their accurate 3D reconstruction using focused ion beam tomography. Additionally, we introduce a simulation method to create nanoporous sponge models with adjustable geometric properties. It is shown that if certain morphological parameters are similar for computer-generated and experimental sponges, their optical response, including magnitudes and hot spot locations, are also similar. Finally, we analyze the anisotropy of experimental sponges and present an easy-to-use method to reproduce arbitrary anisotropies in computer-generated sponges.



https://doi.org/10.1038/s43246-023-00346-7
Azizy, Raschid; Otto, Henning; König, Jörg; Schreier, David; Weigel, Christoph; Cierpka, Christian; Strehle, Steffen
A microfluidic magnetohydrodynamic pump based on a thermally bonded composite of glass and dry film photoresist. - In: Micro and nano engineering, ISSN 2590-0072, Bd. 18 (2023), 100173, S. 1-8

Miniaturized on-chip micropumps with no moving parts are intriguing components for advanced lab-on-chip systems. Magnetohydrodynamic pumping is one possibility but requires further research with respect to microsystems design and fabrication. In this paper, the design and fabrication of a magnetohydrodynamic micropump is discussed using a composite of patterned glass and stacked dry film photoresist as demonstrator platform. The magnetohydrodynamic pumping effect is achieved by the superposition of an electric ion current generated by integrated electrodes and an external magnetic field provided by a permanent magnet. As test electrolytes, potassium chloride with potassium hexacyanoferrate (III) and potassium hexacyane iron (II) were used. Seamless fluid channel sidewalls were achieved from stacked dry film resists, which appear to be cast from a single mold. A liquid-tight sealing of the microchannels was realized by covering them with a thermally bonded laser-structured glass lid. Although, a complete characterization of the pump performance was not yet realized, the micropump in its current state serves as a technology demonstrator for further research of microfluidic on-chip micropumps that utilize the magnetohydrodynamic effect and also for other microfluidic systems.



https://doi.org/10.1016/j.mne.2023.100173
Schulte, Stefan; Néel, Nicolas; Rózsa, Levente; Palotás, Krisztián; Kröger, Jörg
Changing the interaction of a single-molecule magnetic moment with a superconductor. - In: Nano letters, ISSN 1530-6992, Bd. 23 (2023), 4, S. 1622-1628

The exchange interaction of a brominated Co-porphyrin molecule with the Cooper pair condensate of Pb(111) is modified by reducing the Co-surface separation. The stepwise dehalogenation and dephenylation change the Co adsorption height by a few picometers. Only the residual Co-porphine core exhibits a Yu-Shiba-Rusinov bound state with low binding energy in the Bardeen-Cooper-Schrieffer energy gap. Accompanying density functional calculations reveal that the Co dz2 orbital carries the molecular magnetic moment and is responsible for the intragap state. The calculated spatial evolution of the Yu-Shiba-Rusinov wave function is compatible with the experimentally observed oscillatory attenuation of the electron-hole asymmetry with increasing lateral distance from the magnetic porphine center.



https://doi.org/10.1021/acs.nanolett.2c03952
Cheng, Pengfei; Wang, Dong
Easily repairable and high-performance carbon nanostructure absorber for solar photothermoelectric conversion and photothermal water evaporation. - In: ACS applied materials & interfaces, ISSN 1944-8252, Bd. 15 (2023), 6, S. 8761-8769

Carbon materials are a category of broadband solar energy harvesting materials that can convert solar energy into heat under irradiation, which can be used for photothermal water evaporation and photothermoelectric power generation. However, destruction of the carbon nanostructure during usage will significantly decrease the light-trapping performance and, thus, limit their practical applications. In this article, an easily repairable carbon nanostructure absorber with full-solar-spectrum absorption and a hierarchically porous structure is prepared. The carbon absorber shows a superhigh light absorption of above 97% across the whole solar spectrum because of multiple scatterings within the carbon nanostructure and photon interaction with the carbon nanoparticles. The excellent light absorption performance directly leads to a good photothermal effect. As a consequence, the carbon absorber integrated with a thermoelectric module can obtain a large power (133.3 μW cm-2) output under 1 sun. In addition, the carbon absorber combined with the sponge can achieve a high photothermal water evaporation efficiency of 83.6% under 1 sun. Its high-efficiency solar-to-electricity and photothermal water evaporation capabilities demonstrate that the carbon absorber with superhigh absorption, simple fabrication, and facile repairability shows great potential for practical fresh water production and electric power generation.



https://doi.org/10.1021/acsami.2c22077