Zeitschriftenaufsätze ab 2018

Anzahl der Treffer: 1679
Erstellt: Sun, 30 Jun 2024 22:28:27 +0200 in 0.3723 sec


Milanova, Margarita; Aleksandrov, Lyubomir; Yordanova, Aneliya; Iordanova, R.; Tagiara, Nagia S.; Herrmann, Andreas; Gao, G.; Wondraczek, Lothar; Kamitsos, Efstratios I.
Structural and luminescence behavior of Eu3+ ions in ZnO-B2O3-WO3 glasses. - In: Journal of non-crystalline solids, ISSN 0022-3093, Bd. 600 (2023), 122006

Structure and luminescence properties of glasses with compositions 50ZnO:40B2O3:10WO3:xEu2O3, 0 ≤ x ≤ 10 mol% were studied using infrared, Raman and photoluminescence spectroscopic techniques. Physical properties like density, molar volume, oxygen molar volume and oxygen packing density of the glasses were also determined. The overall results obtained indicate the efficiency of the 50ZnO:40B2O3:10WO3 glass structure for the luminescence performance of doped Eu3+. The most intense luminescence peak observed at 612 nm and the high integrated emission intensity ratio (R) of the 5D0&flech;7F2/5D0&flech;7F1 transitions at 612 and 590 nm of 5.77 suggest that the glasses are potential materials for red emission. The results are compared to measurements of a glass without WO3 addition (50ZnO:50B2O3:5Eu2O3) and results from other publications of similar glasses.



https://doi.org/10.1016/j.jnoncrysol.2022.122006
Großmann, Max; Bohm, Sebastian; Heyder, Stefan; Schwarzburg, Klaus; Kleinschmidt, Peter; Runge, Erich; Hannappel, Thomas
Generalized modeling of photoluminescence transients. - In: Physica status solidi, ISSN 1521-3951, Bd. 260 (2023), 1, 2200339, S. 1-12

Time-resolved photoluminescence (TRPL) measurements and the extraction of meaningful parameters involve four key ingredients: a suitable sample such as a semiconductor double heterostructure, a state-of-the-art measurement setup, a kinetic model appropriate for the description of the sample behavior, and a general analysis method to extract the model parameters of interest from the measured TRPL transients. Until now, the last ingredient is limited to single curve fits, which are mostly based on simple models and least-squares fits. These are often insufficient for the parameter extraction in real-world applications. The goal of this article is to give the community a universal method for the analysis of TRPL measurements, which accounts for the Poisson distribution of photon counting events. The method can be used to fit multiple TRPL transients simultaneously using general kinematic models, but should also be used for single transient fits. To demonstrate this approach, multiple TRPL transients of a GaAs/AlGaAs heterostructure are fitted simultaneously using coupled rate equations. It is shown that the simultaneous fits of several TRPL traces supplemented by systematic error estimations allow for a more meaningful and more robust parameter determination. The statistical methods also quantify the quality of the description by the underlying physical model.



https://doi.org/10.1002/pssb.202200339
Wang, Zidong; Hong, Ping; Zhao, Huaping; Lei, Yong
Recent developments and future prospects of transition metal compounds as electrode materials for potassium-ion hybrid capacitors. - In: Advanced Materials Technologies, ISSN 2365-709X, Bd. 8 (2023), 3, 2200515, insges. 18 S.

Potassium-ion hybrid capacitors (PIHCs) have attracted considerable attention as emerging electrochemical energy storage devices for simultaneously achieving high energy and power density, which the key to success is the development of compatible electrode materials for both battery-type anode and capacitive cathode. Among numerous electrode materials, transition metal compounds (including oxides, chalcogenide, carbides, and nitrides) show great potential owing to their high theoretical capacity to achieve high energy density, but their sluggish reaction kinetics restrict the attainable power density. Hence, in the last few years, different strategies are proposed to improve the performance of transition metal compounds as electrode materials for PIHCs, and significant progress is achieved. Herein, this review outlines recent advances of employing transition metal compounds as electrode materials for PIHCs. The performance and challenges of different transition metal compounds are discussed in detail. Finally, the future prospects of practical applications of transition metal compounds in PIHCs are briefly discussed.



https://doi.org/10.1002/admt.202200515
Hülser, Tobias; Köster, Felix; Lüdge, Kathy; Jaurigue, Lina
Deriving task specific performance from the information processing capacity of a reservoir computer. - In: Nanophotonics, ISSN 2192-8614, Bd. 12 (2023), 5, S. 937-947

In the reservoir computing literature, the information processing capacity is frequently used to characterize the computing capabilities of a reservoir. However, it remains unclear how the information processing capacity connects to the performance on specific tasks. We demonstrate on a set of standard benchmark tasks that the total information processing capacity correlates poorly with task specific performance. Further, we derive an expression for the normalized mean square error of a task as a weighted function of the individual information processing capacities. Mathematically, the derivation requires the task to have the same input distribution as used to calculate the information processing capacities. We test our method on a range of tasks that violate this requirement and find good qualitative agreement between the predicted and the actual errors as long as the task input sequences do not have long autocorrelation times. Our method offers deeper insight into the principles governing reservoir computing performance. It also increases the utility of the evaluation of information processing capacities, which are typically defined on i.i.d. input, even if specific tasks deliver inputs stemming from different distributions. Moreover, it offers the possibility of reducing the experimental cost of optimizing physical reservoirs, such as those implemented in photonic systems.



https://doi.org/10.1515/nanoph-2022-0415
Schlag, Leslie; Isaac, Nishchay Angel; Hossain, Mohammad M.; Hess, Anna-Lena; Wolz, Benedikt C.; Reiprich, Johannes; Ziegler, Mario; Pezoldt, Jörg; Jacobs, Heiko O.
Self-aligning metallic vertical interconnect access formation through microlensing gas phase electrodeposition controlling airgap and morphology. - In: Advanced electronic materials, ISSN 2199-160X, Bd. 9 (2023), 1, 2200838, S. 1-8

This publication reports self-aligning metallic via microlensing gas phase electrodeposition formation. Key operational parameters to fabricate vertical ruthenium and rhodium interconnects (via) with a diameter of 100 nm are discussed. Moreover, airgaps are implemented during the deposition process, which utilizes spark discharge to generate a flux of charged nanoparticles. An inert gas flow transports the nanoparticles through a reactor chamber close to the target substrate. The substrate uses a pre-patterned resist with openings to a silicon/silicon dioxide/metal stack to direct the deposition of the nanoparticles to form localized self-aligning vertical interconnects. Five process parameters were identified, which impact the morphology and conductance of the resulting interconnects: spark discharge power, gas flow rate, microlens via dimensions, substrate surface potential, and in situ flash lamp power. This parameter set enables a controlled adjustment of the via interconnect morphology and its minimum feature size. Gas flow rate in combination with spark discharge power contribute significantly to the morphology of the interconnect. Spark power and microlens via dimensions have the largest influence on the surface potential of the insulating resist cover, which enables a localized microlensing gas phase electrodeposition of a via with a controlled ratio between conducting diameter and airgap.



https://doi.org/10.1002/aelm.202200838
Link, Steffen; Dimitrova, Anna; Krischok, Stefan; Ivanov, Svetlozar
Electrochemical deposition of silicon in organic electrolytes. - In: Reference module in chemistry, molecular sciences and chemical engineering, (2023)

Electrodeposition is a versatile instrumental technique, already applied in many industrial fields. However, the deposition of silicon and other reactive elements is still challenging and requires further research and improvement. Accomplishing an efficient electrodeposition of silicon at room temperature is very attractive due to the high number of manufacturing technologies that would benefit from this approach. This work provides an overview of the electrochemical approaches for silicon deposition performed in organic electrolytes. The main factors that impact this process are individually discussed and exemplified with appropriately updated literature sources. Furthermore, the previously available research on characterization of electrodeposited silicon containing layers is provided. These studies are presented in the context of better understanding the structure, composition, and functional properties of the deposited silicon material, which may attract the attention of young academic scientists and process engineers.



https://doi.org/10.1016/B978-0-323-85669-0.00005-2
Gholami-Kermanshahi, Mozhgan; Wu, Yu-Yan; Lange, Günther; Chang, Shih-Hang
Effect of alloying elements (Nb, Ag) on the damping performance of Cu-Al-Mn shape memory alloys. - In: Journal of alloys and compounds, ISSN 1873-4669, Bd. 930 (2023), 167438, S. 1-11

This study investigates the damping properties of Cu-Al-Mn shape memory alloys (SMAs) with various chemical compositions and the effects of the addition of quaternary alloying elements Ag and Nb on the microstructure, martensitic transformation behavior, and damping capacity of SMAs. Compared to other Cu-12Al-xMn (x = 4-7wt. %) SMAs, Cu-12Al-5Mn has a more significant inherent and intrinsic internal friction (IFPT + IFI) peak above room temperature. The addition of Ag or Nb to Cu-12Al-5Mn reduced the grain size, thereby increasing the hardness of the alloys; however, the damping capacity and temperature of the IFPT + IFI peak decreased simultaneously. The addition of Ag to Cu-12Al-5Mn significantly reduced the damping capacity (IFPT+IFI peak) because of the notable decrease in the amount of transformed martensite. Moreover, the addition of Nb to Cu-12Al-5Mn caused the AlNb3 phase to precipitate, limiting the mobility of the martensite variant interfaces and slightly decreasing the damping capacity (IFPT + IFI peak). Among the Ag- and Nb-doped Cu-12Al-5Mn SMAs, Cu-12Al-5Mn-1Nb showed not only a significantly higher hardness but also a higher IFPT + IFI peak, with tan δ exceeding 0.01 at approximately 50 ˚C.



https://doi.org/10.1016/j.jallcom.2022.167438
Prylutskyy, Yuriy; Nozdrenko, Dmytro; Gonchar, Olga; Prylutska, Svitlana; Bogutska, Kateryna; Täuscher, Eric; Scharff, Peter; Ritter, Uwe
The residual effect of C60 fullerene on biomechanical and biochemical markers of the muscle soleus fatigue development in rats. - In: Journal of nanomaterials, ISSN 1687-4129, Bd. 2023 (2023), e2237574, S. 1-11

Muscle fatigue as a defense body mechanism against overload is a result of the products of incomplete oxygen oxidation such as reactive oxygen species. Hence, C60 fullerene as a powerful nanoantioxidant can be used to speed up the muscle recovery process after fatigue. Here, the residual effect of C60 fullerene on the biomechanical and biochemical markers of the development of muscle soleus fatigue in rats for 2 days after 5 days of its application was studied. The known antioxidant N-acetylcysteine (NAC) was used as a comparison drug. The atomic force microscopy to determine the size distribution of C60 fullerenes in an aqueous solution, the tensiometry of skeletal muscles, and the biochemical analysis of their tissues and rat blood were used in this study. It was found that after the cessation of NAC injections, the value of the integrated muscle power is already slightly different from the control (5%-7%) on the first day, and on the second day, it does not significantly differ from the control. At the same time, after the cessation of C60 fullerene injections, its residual effect was 45%-50% on the first day, and 17%-23% of the control on the second one. A significant difference (more than 25%) between the pro- and antioxidant balance in the studied muscles and blood of rats after the application of C60 fullerene and NAС plays a key role in the long-term residual effect of C60 fullerene. This indicates prolonged kinetics of C60 fullerenes elimination from the body, which contributes to their long-term (at least 2 days) compensatory activation of the endogenous antioxidant system in response to muscle stimulation, which should be considered when developing new therapeutic agents based on these nanoparticles.



https://doi.org/10.1155/2023/2237574
Ratz, Manuel; Fiorini, Domenico; Simonini, Alessia; Cierpka, Christian; Mendez, Miguel Alfonso
Analysis of an unsteady quasi-capillary channel flow with time-resolved PIV and RBF-based super-resolution. - In: Journal of coatings technology and research, ISSN 1935-3804, Bd. 20 (2023), 1, S. 27-40

We investigate the interface dynamics in an unsteady quasi-capillary channel flow. The configuration consists of a liquid column that moves along a vertical 2D channel, open to the atmosphere and driven by a controlled pressure head. Both advancing and receding contact lines were analyzed to test the validity of classic models for dynamic wetting and to study the flow field near the interface. The operating conditions are characterized by a large acceleration, thus dominated by inertia. The shape of the moving meniscus was retrieved using Laser-Induced Fluorescence-based image processing, while the flow field near was analyzed via Time-Resolved Particle Image Velocimetry (TR-PIV). The TR-PIV measurements were enhanced in the post-processing, using a combination of Proper Orthogonal Decomposition and Radial Basis Functions to achieve super-resolution of the velocity field. Large counter-rotating vortices were observed, and their evolution was monitored in terms of the maximum intensity of the Q-field. The results show that classic contact angle models based on interface velocity cannot describe the evolution of the contact angle at a macroscopic scale. Moreover, the impact of the interface dynamics on the flow field is considerable and extends to several capillary lengths below the interface.



https://doi.org/10.1007/s11998-022-00664-4
Mayer, Hannes; Tomaschko, Silvia; Mayer, Thomas; Lange, Günther
New method for evaluating and optimizing transient piston friction and cooling using a high-power laser in motored operation. - In: SAE International journal of engines, ISSN 1946-3944, Bd. 16 (2023), 4, 03-16-04-0025

The input of combustion heat in engines has a major impact on the piston friction and the resulting wear of the piston skirt. The new methodology presented here enables the simulation of combustion heat input during motored operation, and thus a detailed investigation of the piston friction under realistic piston temperature profiles of real engine operation is possible. For this purpose a standardized engine test bench for motored friction evaluations was expanded to include, among other things, a movable high-power diode laser with special defocusing optics. The setup of the test engine is based on the FEV teardown step methodology [1] and has open access to the engine piston from above due to a cylinder head dummy. Thus, the heat input by means of a high-power diode laser into the piston crown can be made. The reduced engine structure also enables a precise and highly accurate evaluation of the piston friction. A previously conducted validation process of the methodology ensures the most accurate possible replication of fired piston temperature profiles. The comparison between the piston temperatures measured in fired operation and those simulated in motored operation for a partial load operating point shows a maximum variance deviation of only 15˚C depending on the measuring point. The new methodology is also used in particular for the evaluation and detection of critical piston friction conditions. Experiments in this context are presented and discussed exemplary by using three measurement series at different operating temperatures and engine speeds. There is a gradual increase in the laser power for each series of measurements and thus in the heat input into the piston. The increase in heat input leads to a significant increase in friction at all operating points due to thermal expansion and the associated decrease reduction in piston clearance. Depending on the operating temperature and the engine speed, a critical piston friction condition is achieved and detected by the level of friction increase. The additional use of ultrasonic sensors and the knock sensor installed as standard makes a simultaneous measurement of the structure-borne sound signals possible. The increase in the acceleration levels of all sensors correlates here with the increase in piston friction. An evaluation of the noise, vibration, and harshness (NVH) measurement in both the frequency range and the crank angle (CA) range shows conspicuous high-frequency excitation levels that occur in the top dead center area. This correlation can be proven for all three measurement series. The results obtained here may open a path to an improved piston cooling strategy in the future.



https://doi.org/10.4271/03-16-04-0025