Zeitschriftenaufsätze ab 2018

Anzahl der Treffer: 1679
Erstellt: Sun, 30 Jun 2024 22:28:27 +0200 in 0.3978 sec


Hammer, Martin; Simon, Rowena; Meller, Daniel; Klemm, Matthias
Combining fluorescence lifetime with spectral information in fluorescence lifetime imaging ophthalmoscopy (FLIO). - In: Biomedical optics express, ISSN 2156-7085, Bd. 13 (2022), 10, S. 5483-5494

Fluorescence lifetime imaging ophthalmoscopy (FLIO) provides information on fluorescence lifetimes in two spectral channels as well as the peak emission wavelength (PEW) of the fluorescence. Here, we combine these measures in an integral three-dimensional lifetime-PEW metric vector and determine a normal range for this vector from measurements in young healthy subjects. While for these control subjects 97 (±8) % (median (interquartile range)) of all para-macular pixels were covered by this normal vector range, it was 67 (±55) % for the elderly healthy, 38 (±43) % for age-related macular degeneration (AMD)-suspect subjects, and only 6 (±4) % for AMD patients. The vectors were significantly different for retinal pigment epithelium (RPE) lesions in AMD patients from that of non-affected tissue (p < 0.001). Lifetime- PEW plots allowed to identify possibly pathologic fundus areas by fluorescence parameters outside a 95% quantile per subject. In a patient follow-up, changes in fluorescence parameters could be traced in the lifetime-PEW metric, showing their change over disease progression.



https://doi.org/10.1364/BOE.457946
Arnim, Mareike; vonEichler, Stefan; Brätz, Oliver; Hildebrand, Jörg; Gericke, Andreas; Kuhlmann, Ulrike; Bergmann, Jean Pierre; Flügge, Wilko
Effective design concepts for welded mixed connections in steel structures :
Effiziente Nachweiskonzepte für geschweißte Mischverbindungen im Stahlbau. - In: Stahlbau, ISSN 1437-1049, Bd. 91 (2022), 10, S. 660-670

Mischverbindungen aus normalfesten und hochfesten Stählen ermöglichen einen optimierten Materialeinsatz durch die Anpassung an die einwirkenden Kräfte. Das führt ökologisch und wirtschaftlich zu Vorteilen durch einen reduzierten Materialverbrauch und kleinere Schweißnahtgeometrien. Da normativ derzeit keine Regelungen für stumpfgeschweißte Mischverbindungen aus normalfesten und hochfesten Stählen bestehen, soll im laufenden Forschungsprojekt „Effiziente Nachweiskonzepte für Mischverbindungen im Stahlbau“ ein Bemessungsansatz dafür entwickelt werden. Darüber hinaus werden die bereits bestehenden Bemessungskonzepte für Stumpfnahtverbindungen und Kehlnahtverbindungen bis zur Stahlsorte S960 erweitert, sodass die geplante neue Fassung des Teils EN 1993-1-12 entsprechend ergänzt werden kann. Dafür werden umfangreiche experimentelle Untersuchungen zur Tragfähigkeit durchgeführt, bei denen die Einflussgrößen Grundwerkstoff, Schweißzusatz, Energieeintrag, Blechdicke und Nahtgeometrie variieren. Mit den erzielten Ergebnissen und weiterführenden Begleituntersuchungen können die Auswirkungen variierender Einflussgrößen auf die Tragfähigkeit der Schweißverbindungen identifiziert werden. Über erste Ergebnisse wird im Folgenden berichtet.



https://doi.org/10.1002/stab.202200046
Marx-Blümel, Lisa; Marx, Christian; Schober, Andreas; Beck, James F.
In vitro-Amplifikation humaner hämatopoetischer Stammzellen im 3D-System. - In: Biospektrum, ISSN 1868-6249, Bd. 28 (2022), 5, S. 489-492

A promising strategy to increase the numbers of hematopoietic stem cells (HSCs) for clinical applications, like stem cell transplantation, is offered by advanced in vitro culture systems. We developed artificial 3D bone marrow-like scaffolds made of polydimethylsiloxane (PDMS) mimicking the natural HSC niche in vitro. These 3D PDMS scaffolds in combination with an optimized culture medium allow the amplification of high numbers of undifferentiated HSCs by activating specific molecular signaling pathways.



https://doi.org/10.1007/s12268-022-1798-2
Huang, Jian; Li, Yiran; Shardt, Yuri A. W.; Qiao, Liang; Shi, Mingrui; Yang, Xu
Error-driven chained multiple-subnetwork echo state network for time-series prediction. - In: IEEE sensors journal, ISSN 1558-1748, Bd. 22 (2022), 20, S. 19533-19542

Hybrid echo state networks (ESNs), a type of modified ESN, have been developed to improve the prediction accuracy of ESNs. However, they have been criticized for their computational complexity, which makes it difficult to use them directly in industrial applications. In this article, an error-driven chained multiple-subnetwork ESN (CESN) is proposed to build a simple structured hybrid network and improve its prediction accuracy. For this reason, a chain topology is generated to gradually reduce the residual error, while each subnetwork is trained separately. The weight matrix for each subnetwork does not need to be optimized, which reduces the computational cost. Meanwhile, the optimal number of subnetworks is determined on the basis of a given application. The efficiency of the proposed CESN is tested on a Santa Fe Laser and a public building dataset. Compared with ESN, 70% of the test data have been optimized by CESN for the public building dataset.



https://doi.org/10.1109/JSEN.2022.3200069
Quispe, Roger; Torres, Carlos; Eggert, Lara; Ccama, Gianella A.; Kurniawan, Mario; Hopfeld, Marcus; Zárate Moya, José Luis; Camargo, Magali K.; Rosenkranz, Andreas; Acosta, Julio A.; Bund, Andreas; Schaaf, Peter; Grieseler, Rolf
Tribological and mechanical performance of Ti2AlC and Ti3AlC2 thin films. - In: Advanced engineering materials, ISSN 1527-2648, Bd. 24 (2022), 10, 2200188, S. 1-11

Mn+1AXn (MAX) phases are novel structural and functional materials with a layered crystal structure. Their unique properties such as good machinability, high electrical conductivity, low friction, and corrosion resistance are appealing for many engineering applications. Herein, Ti2AlC and Ti3AlC2 MAX thin films are synthesized by magnetron sputtering and subsequent thermal annealing. A multilayer approach is used to deposit single-element nanolayers of titanium, aluminum, and carbon onto silicon substrates with a double-layer-diffusion barrier of SiO2 and SixNy. Ti2AlC and Ti3AlC2 thin films (thickness ≈500 nm) are formed via rapid thermal annealing and verified by X-Ray diffraction. Nanoindentation tests show hardness values of about 11.6 and 5.3 GPa for Ti2AlC and Ti3AlC2, respectively. The tribological behavior of the Ti2AlC and Ti3AlC2 thin films against AISI 52100 steel balls under dry sliding conditions is studied using ball-on-flat tribometry. The resulting coefficient of friction (CoF) for Ti2AlC and Ti3AlC2 ranges between 0.21-0.42 and 0.64-0.91, respectively. The better tribological behavior observed for Ti2AlC thin films is ascribed to its smaller grain size, reduced surface roughness, and higher hardness.



https://doi.org/10.1002/adem.202200188
Moritz, Dominik Christian; Ruiz Alvarado, Isaac Azahel; Zare Pour, Mohammad Amin; Paszuk, Agnieszka; Frieß, Tilo; Runge, Erich; Hofmann, Jan Philipp; Hannappel, Thomas; Schmidt, W. Gero; Jaegermann, Wolfram
P-terminated InP (001) surfaces: surface band bending and reactivity to water. - In: ACS applied materials & interfaces, ISSN 1944-8252, Bd. 14 (2022), 41, S. 47255-47261

Stable InP (001) surfaces are characterized by fully occupied and empty surface states close to the bulk valence and conduction band edges, respectively. The present photoemission data show, however, a surface Fermi level pinning only slightly below the midgap energy which gives rise to an appreciable surface band bending. By means of density functional theory calculations, it is shown that this apparent discrepancy is due to surface defects that form at finite temperature. In particular, the desorption of hydrogen from metalorganic vapor phase epitaxy grown P-rich InP (001) surfaces exposes partially filled P dangling bonds that give rise to band gap states. These defects are investigated with respect to surface reactivity in contact with molecular water by low-temperature water adsorption experiments using photoemission spectroscopy and are compared to our computational results. Interestingly, these hydrogen-related gap states are robust with respect to water adsorption, provided that water does not dissociate. Because significant water dissociation is expected to occur at steps rather than terraces, surface band bending of a flat InP (001) surface is not affected by water exposure.



https://doi.org/10.1021/acsami.2c13352
Rothe, Karl; Néel, Nicolas; Bocquet, Marie-Laure; Kröger, Jörg
Tracking the interaction between a CO-functionalized probe and two Ag-phthalocyanine conformers by local vertical force spectroscopy. - In: The journal of physical chemistry, ISSN 1520-5215, Bd. 126 (2022), 39, S. 6890-6897

Intentionally terminating scanning probes with a single atom or molecule belongs to a rapidly growing field in the quantum chemistry and physics at surfaces. However, the detailed understanding of the coupling between the probe and adsorbate is in its infancy. Here, an atomic force microscopy probe functionalized with a single CO molecule is approached with picometer control to two conformational isomers of Ag-phthalocyanine adsorbed on Ag(111). The isomer with the central Ag atom pointing to CO exhibits a complex evolution of the distance-dependent interaction, while the conformer with Ag bonded to the metal surface gives rise to a Lennard-Jones behavior. By virtue of spatially resolved force spectroscopy and the comparison with results obtained from microscope probes terminated with a single Ag atom, the mutual coupling of the protruding O atom of the tip and the Ag atom of the phthalocyanine molecule is identified as the cause for the unconventional variation of the force. Simulations of the entire junction within density functional theory unveil the presence of ample relaxations in the case of one conformer, which represents a rationale for the peculiar vertical-distance evolution of the interaction. The simulations highlight the role of physisorption, chemisorption, and unexpected junction distortions at the verge of bond formation in the interpretation of the distance-dependent force between two molecules.



https://doi.org/10.1021/acs.jpca.2c04760
Rothe, Karl; Néel, Nicolas; Bocquet, Marie-Laure; Kröger, Jörg
Extraction of chemical reactivity and structural relaxations of an organic dye from the short-range interaction with a molecular probe. - In: The journal of physical chemistry letters, ISSN 1948-7185, Bd. 13 (2022), 37, S. 8660-8665

A CO-functionalized atomic force microscope tip is used to locally probe local chemical reactivity and subtle structural relaxations of a single phthalocyanine molecule at different stages of pyrrolic-H abstraction. Spatially resolved vertical force spectroscopy unveils a variation of the maximum short-range attraction between CO and intramolecular sites, which is interpreted as a measure for the local chemical reactivity. In addition, the vertical position of the point of maximum attraction is observed to vary across the molecules. These changes follow the calculated adsorption heights of the probed molecular atoms.



https://doi.org/10.1021/acs.jpclett.2c02140
Gizatullin, Bulat; Mattea, Carlos; Shikhov, Igor; Arns, Christoph; Stapf, Siegfried
Modeling molecular interactions with wetting and non-wetting rock surfaces by combining electron paramagnetic resonance and NMR relaxometry. - In: Langmuir, ISSN 1520-5827, Bd. 38 (2022), 36, S. 11033-11053

Three types of natural rocks - Bentheimer and Berea sandstones, as well as Liège Chalk - have been aged by immersion in a bitumen solution for extended periods of time in two steps, changing the surface conditions from water-wet to oil-wet. NMR relaxation dispersion measurements were carried out on water and oil constituents, with saturated and aromatic molecules considered individually. In order to separate the different relaxation mechanisms discussed in the literature, 1H and 19F relaxation times were compared to 2H for fully deuterated liquids: while 2H relaxes predominantly by quadrupolar coupling, which is an intramolecular process, the remaining nuclei relax by dipolar coupling, which potentially consists of intra- and intermolecular contributions. The wettability change becomes evident in an increase of relaxation rates for oil and a corresponding decrease for water. However, this expected behavior dominates only for the spin-lattice relaxation rate R1 at very low field strengths and for the spin-spin relaxation rate R2, while high-field longitudinal relaxation shows a much weaker or even reverse trend. This is attributed in part to a change of radical concentration on the pore surface upon coverage of the native rock surface by bitumen as well as by the change of surface chemistry and roughness. EPR and DNP measurements quantify the change of volume vs surface radical concentration in the rocks, and an improved understanding of the role of relaxation via paramagnetic centers is obtained. By means of comparing different fluids and nuclei in combination with a defined wettability change of natural rocks, a refined model for molecular dynamics in conjunction with NMR relaxation dispersion is proposed.



https://doi.org/10.1021/acs.langmuir.2c01681
Shmagun, Vitalii; Gerhardt, Uwe; Fröhlich, Thomas; Manske, Eberhard; Kissinger, Thomas
Absolute distance measurements for in-situ interferometer characterisation using range-resolved interferometry. - In: Measurement science and technology, ISSN 1361-6501, Bd. 33 (2022), 12, 125024, S. 1-12

Range-resolved interferometry (RRI) allows the simultaneous demodulation of multiple interferometric signal sources and provides a tomographic view of all constituent interferometers that may be present in a setup. Through comparison with a reference distance of known length, absolute distance measurements can be performed. RRI is tailored to the use of laser frequency modulation through injection-current modulation of regular, monolithic laser diodes that are both cost-effective and highly coherent and therefore this approach promises broad applicability. In this paper, two methods for absolute distance measurement, one based on the direct evaluation of the signal peak positions and one based on the phase demodulation of an additional lock-in modulation signal, are experimentally demonstrated. Using an external verification displacement interferometer, both techniques are shown to achieve in-situ absolute distance measurements with systematic errors below over a 50 mm travel range. The aim of this paper is to establish the general suitability of RRI for absolute distance measurements and in-situ tomographic interferometer characterisation for precision engineering. In future, this approach could be used to diagnose interferometric setups for parasitic signal contributions, multiple reflections or to determine the dead path length for accurate environmental compensation, either for use during initial setup of, or for continuous operation alongside, a regular displacement measuring interferometer.



https://doi.org/10.1088/1361-6501/ac970a