Zeitschriftenaufsätze ab 2018

Anzahl der Treffer: 1679
Erstellt: Sun, 30 Jun 2024 22:28:27 +0200 in 0.1144 sec


Huang, Jian; Sun, Xiaoyang; Yang, Xu; Shardt, Yuri A. W.
Active nonstationary variables selection based just-in-time co-integration analysis and slow feature analysis monitoring approach for dynamic processes. - In: Journal of process control, ISSN 0959-1524, Bd. 117 (2022), S. 112-121

For industrial processes, operating conditions tend to be time varying, leading to the time-varying nonstationary characteristics. In this paper, an active nonstationary variables selection-based just-in-time co-integration analysis and slow feature analysis monitoring approach is proposed to explore the real-time variations in dynamic processes. To this end, by analyzing the time-varying stationarity of online data, active nonstationary variables are selected. Meanwhile, a just-in-time strategy is used to update the offline model. On this basis, co-integration analysis and slow feature analysis are developed for extracting long-run equilibrium relationships and slowly varying features. A comprehensive statistic is generated by Bayesian inference to monitor the operation status. With the active nonstationary information extraction, the proposed method emphasizes the online nonstationary characteristics, which allows the monitoring model to effectively capture the dynamic variations. Two case studies on benchmark processes show the advantages and feasibility of the proposed method.



https://doi.org/10.1016/j.jprocont.2022.07.008
Hähnlein, Bernd; Kellner, Maria; Krey, Maximilian; Nikpourian, Alireza; Pezoldt, Jörg; Michael, Steffen; Töpfer, Hannes; Krischok, Stefan; Tonisch, Katja
The angle dependent ΔE effect in TiN/AlN/Ni micro cantilevers. - In: Sensors and actuators, ISSN 1873-3069, Bd. 345 (2022), 113784, S. 1-12

In this work, magnetoelectric MEMS sensors based on a TiN/AlN/Ni laminate are investigated for the first time in regards of the anisotropic elastic properties when using hard magnetic Nickel as magnetostrictive layer. The implications of crystalline, uniaxial and shape anisotropy are analysed arising from the anisotropic ΔE effect in differently oriented cantilevers with 25 µm length and 15˚ spacing. The ΔE effect is derived analytically to consider the angular dependency of the different anisotropies within the sensors. In the measured frequency spectra complex profiles are observable consisting of contributions from neighbouring structures which are connected by a common electrode. The crosstalk effect is strongly depending on the cantilever orientation and reflects the anisotropic mechanical properties of the material stack. The intensity of the crosstalk effect is increasing for shortened cantilevers and narrowing distance between structures. The ΔE effect is investigated based on cantilevers of different angular spacing and of a single cantilever that is rotated in the magnetic field. The derived peak sensitivities are reaching values of 1.15 and 1.31T-1. The angular dependency of the sensitivity is found to be approximately constant for differently oriented cantilevers. In contrast, for a singly rotated cantilever an angular dependency of the 4th order is observed.



https://doi.org/10.1016/j.sna.2022.113784
Saenz, Theresa E.; Nandy, Manali; Paszuk, Agnieszka; Ostheimer, David; Koch, Juliane; McMahon, William E.; Zimmerman, Jeramy D.; Hannappel, Thomas; Warren, Emily L.
MOCVD surface preparation of V-groove Si for III-V growth. - In: Journal of crystal growth, Bd. 597 (2022), 126843

V-groove nanopatterning of Si substrates has recently demonstrated promise for achieving high-quality III-V-on-Si epitaxy while providing a lower-cost processing route than chemo-mechanical polishing to produce epi-ready planar wafers. A key factor in determining the crystalline quality of III-V buffer layers is the Si surface structure and its chemical composition. Unlike planar Si surfaces, the surfaces of V-grooves prior to growth have not been studied in detail. Here, we study the surface of V-groove Si prepared for GaP nucleation via X-ray photoelectron spectroscopy and low-energy electron diffraction. We identify several pretreatments, using both 830˚C and 1000˚C annealing under an As background pressure, as being suitable for deoxidizing and cleaning the V-groove Si surface. The V-groove Si was found to behave similarly to reference Si(0 0 1) and Si(1 1 1) planar samples, demonstrating that in situ techniques such as reflection anisotropy spectroscopy can be used on reference samples to infer the state of the V-groove surface, and indicating that the extensive research on planar Si surfaces can be directly applied to V-grooves.



https://doi.org/10.1016/j.jcrysgro.2022.126843
Romanyuk, Oleksandr; Paszuk, Agnieszka; Gordeev, Ivan; Wilks, Regan G.; Ueda, Shigenori; Hartmann, Claudia; Félix, Roberto; Bär, Marcus; Schlueter, Christoph; Gloskovskii, Andrei; Bartoš, I.; Nandy, Manali; Houdková, Jana; Jiříček, Petr; Jaegermann, Wolfram; Hofmann, Jan Philipp; Hannappel, Thomas
Combining advanced photoelectron spectroscopy approaches to analyse deeply buried GaP(As)/Si(100) interfaces : Interfacial chemical states and complete band energy diagrams. - In: Applied surface science, Bd. 605 (2022), 154630

The epitaxial growth of the polar GaP(100) on the nonpolar Si(100) substrate suffers from inevitable defects at the antiphase domain boundaries (APDs), resulting from mono-atomic steps on the Si(100) surface. Stabilization of Si(100) substrate surfaces with As is a promising technological step enabling the preparation of Si substrates with double atomic steps and reduced density of the APDs. In this paper, 4-50-nm-thick GaP epitaxial films were grown on As-terminated Si(100) substrates with different types of doping, miscuts, and As-surface termination by metalorganic vapor phase epitaxy (MOVPE). The GaP(As)/Si(100) heterostructures were investigated by X-ray photoelectron spectroscopy (XPS) combined with gas cluster ion beam (GCIB) sputtering and by hard X-ray photoelectron spectroscopy (HAXPES). We found residuals of As atoms in the GaP lattice (∼0.2-0.3 at.%) and a localization of As atoms at the GaP(As)/Si(100) interface (∼1 at.%). Deconvolution of core level peaks revealed interface core level shifts. In As core levels, chemical shifts between 0.5 and 0.8 eV were measured and identified by angle-resolved XPS measurements. Similar valence band offset (VBO) values of 0.6 eV were obtained, regardless of the doping type of Si substrate, Si substrate miscut or type of As-terminated Si substrate surface. The band alignment diagram of the GaP(As)/Si(1 0 0) heterostructure was deduced.



https://doi.org/10.1016/j.apsusc.2022.154630
Kursun, Elif Cansu; Supreeti, Shraddha; Janssens, Koenraad G. F.; Schift, Helmut; Spätig, Philippe
High optical contrast nanoimprinted speckle patterns for digital image correlation analysis. - In: Micro and nano engineering, ISSN 2590-0072, Bd. 17 (2022), 100164, S. 1-9

For the characterization of the mechanical deformation of materials at microscopic length scales, image processing of a high-quality surface pattern was used. We imprinted speckle patterns onto a thin polymer film attached to the surface of flat and curved metal substrates using flexible molds and soft-thermal nanoimprint lithography. High optical contrast was achieved by mixing black dye into the film generating high absorption in the elevated structures, and by adding titania nanoparticles as fillers to the recessed areas to induce diffuse scattering. For accessing resolution suitable to detect deformation at an individual grain level, the structure sizes were scaled down from 20 μm to 2 μm. For both structure sizes imaging was tested using a digital image correlation setup, that enables 3D imaging of samples with angles of up to 10˚ of inclination.



https://doi.org/10.1016/j.mne.2022.100164
Sommer, Klaus-Dieter; Fröhlich, Thomas; Schnelle-Werner, Olaf
Conference measurement uncertainty Erfurt 2021 :
Tagung Messunsicherheit Erfurt 2021. - In: Technisches Messen, ISSN 2196-7113, Bd. 89 (2022), 10, S. 645-646

https://doi.org/10.1515/teme-2022-0088
Pruchnik, Bartosz; Piasecki, Tomasz; Orłowska, Karolina; Majstrzyk, Wojciech; Sierakowski, Andrzej; Gotszalk, Teodor; Rangelow, Ivo W.
Study of the efficiency of microcantilevers: cases of electrothermal and electromagnetic actuation. - In: Journal of microelectromechanical systems, ISSN 1941-0158, Bd. 31 (2022), 5, S. 784-790

In following paper we propose method of energetic description for active microcantilevers. Microelectromechanical devices (MEMS), to which the microcantilevers belong, are becoming part of energy generation and transformation systems. Therefore efficiency of said devices becomes significant parameter. In our approach we described the method to estimate the efficiency based on the measured parameters of a cantilever and it’s effective movement under actuation. We have conducted measurements an calculations for series of cantilevers actuated electrothermally and electromagnetically. Acquired results are in line with predicted properties of examined MEMS’. Method is suited for description of microcantilevers, assessment of utility and comparison in case of common application. [2022-0043]



https://doi.org/10.1109/JMEMS.2022.3187793
Huang, Tianbai; Kupfer, Stephan; Richter, Martin; Gräfe, Stefanie; Geitner, Robert
Bidentate Rh(I)-phosphine complexes for the C-H activation of alkanes: computational modelling and mechanistic insight. - In: ChemCatChem, ISSN 1867-3899, Bd. 14 (2022), 18, e202200854, S. 1-9

The C-H activation and subsequent carbonylation mediated by metal complexes, i. e., Rh(I) complexes, has drawn considerable attention in the past. To extend the mechanistic insight from Rh complexes featuring monodentate ligands like P(Me)3 towards more active bisphosphines (PLP), a computationally derived fully conclusive mechanistic picture of the Rh(I)-catalyzed C-H activation and carbonylation is presented here. Depending on the nature of the bisphosphine ligand, the highest lying transition state (TS) is associated either to the initial C-H activation in [Rh(PLP)(CO)(Cl)] or to the rearrangement of the chloride in [Rh(PLP)(H)(R)(Cl)]. The chloride rearrangement was found to play a key role in the subsequent carbonylation. A set of 20 complexes of different architectures was studied, in order to fine tune the C-H activation in a knowledge-driven approach. The computational analysis suggests that a flexible ligand architecture with aromatic rings can potentially increase the performance of Rh-based catalysts for the C-H activation.



https://doi.org/10.1002/cctc.202200854
Cao-Riehmer, Jialan; Russo, David A.; Xie, Ting; Groß, Gregor Alexander; Zedler, Julie
A droplet-based microfluidic platform enables high-throughput combinatorial optimization of cyanobacterial cultivation. - In: Scientific reports, ISSN 2045-2322, Bd. 12 (2022), 15536, S. 1-12

Cyanobacteria are fast-growing, genetically accessible, photoautotrophs. Therefore, they have attracted interest as sustainable production platforms. However, the lack of techniques to systematically optimize cultivation parameters in a high-throughput manner is holding back progress towards industrialization. To overcome this bottleneck, here we introduce a droplet-based microfluidic platform capable of one- (1D) and two-dimension (2D) screening of key parameters in cyanobacterial cultivation. We successfully grew three different unicellular, biotechnologically relevant, cyanobacteria: Synechocystis sp. PCC 6803, Synechococcus elongatus UTEX 2973 and Synechococcus sp. UTEX 3154. This was followed by a highly-resolved 1D screening of nitrate, phosphate, carbonate, and salt concentrations. The 1D screening results suggested that nitrate and/or phosphate may be limiting nutrients in standard cultivation media. Finally, we use 2D screening to determine the optimal N:P ratio of BG-11. Application of the improved medium composition in a high-density cultivation setup led to an increase in biomass yield of up to 15.7%. This study demonstrates that droplet-based microfluidics can decrease the volume required for cyanobacterial cultivation and screening up to a thousand times while significantly increasing the multiplexing capacity. Going forward, microfluidics have the potential to play a significant role in the industrial exploitation of cyanobacteria.



https://doi.org/10.1038/s41598-022-19773-6
Cao-Riehmer, Jialan; Pliquett, Uwe; Yang, Lin; Wiedemeier, Stefan; Cahill, Brian; Köhler, Michael
Contactless optical and impedimetric sensing for droplet-based dose-response investigations of microorganisms. - In: Sensors and actuators, ISSN 0925-4005, Bd. 372 (2022), 132688

The principle of droplet-based microfluidics was used for the characterization of dose/response functions of the soil bacteria Rhodococcus sp. and Chromobacterium vaccinii using a combination of optical and electrical sensors for the detection of bacterial growth and metabolic activity. For electrical characterization, a micro flow-through impedance module was developed which assessed the response of bacterial populations inside 500 nL fluid segments without direct galvanic contact between the electrodes and the electrolyte. It was found that the impedance sensor can detect an increase in cell density and is particularly suited for monitoring the metabolic response due to changes in the cultivation medium inside the separated fluid segments. Due to this sensitivity, the sensor is useful for investigating growing bacteria or cell cultures in small fluid compartments and obtaining highly resolved dose-response functions by microfluid segment sequences. The impedimetric data agree well with the optical data concerning the characteristic response of bacteria populations in the different concentration regions of heavy metal ions. However, the sensor supplies valuable complementary data on metabolic activity in case of low or negligible cell division rates.



https://doi.org/10.1016/j.snb.2022.132688