Zeitschriftenaufsätze ab 2018

Anzahl der Treffer: 1679
Erstellt: Sun, 30 Jun 2024 22:28:27 +0200 in 0.1033 sec


Schneckenburger, Max; Almeida, Rui; Höfler, Sven; Börret, Rainer
Material removal by slurry erosion in the robot polishing of optics by polishing slurry nozzles. - In: Wear, ISSN 0043-1648, Bd. 494/495 (2022), 204257

Robot polishing is increasingly being used in the production of high-end glass work pieces such as astronomy mirrors, lithography mirrors, laser gyroscopes or high-precision coordinate measuring machines. The quality of optical components such as lenses or mirrors can be described by shape errors and surface roughness. Whilst the trend towards sub nanometre level surfaces finishes and features progresses, matching both form and finish coherently in complex parts remains a major challenge. With increasing optic sizes, the stability of the polishing process becomes more and more important. Polishing agent nozzles supply the polishing process with sufficient polishing agent and it is assumed that this slurry erosion has an influence on the material removal. To investigate this, a static test set-up was built. The primary aim of this paper is to point out and raise awareness of the problem of slurry erosion in glass polishing and the influence of slurry erosion by conventional polishing nozzles is shown. From an angle of 30˚, the nozzle turns into a fluid jet tool and removes material independently.



https://doi.org/10.1016/j.wear.2022.204257
Dürr, André; Böhm, Dennis; Schwarz, Dominik; Häfner, Stephan; Thomä, Reiner; Waldschmidt, Christian
Coherent measurements of a multistatic MIMO radar network with phase noise optimized non-coherent signal synthesis. - In: IEEE journal of microwaves, ISSN 2692-8388, Bd. 2 (2022), 2, S. 239-252

For multistatic radar networks in the upper mm-wave range with a large spacing between its radar sensor nodes, a coherent signal distribution is very complex and thus very costly. Hence, it is desirable to generate the mm-wave signals individually for each radar sensor node, i.e., non-coherently. However, multistatic radar networks using a non-coherent signal distribution for its radar sensor nodes are affected by systematic errors and uncorrelated phase noise, which reduces the resolution and the detection performance of these systems. In this article, a novel non-coherent signal synthesis concept based on the direct digital synthesis (DDS) principle is presented for multistatic radar networks. Compared to a signal synthesis using a phase-locked loop (PLL), it is shown that the different phase noise behavior of the DDS is beneficial for bistatic signal paths between the radar sensor nodes. The presented hardware concept is considered and analyzed for three different types of coherency regarding the signal distribution: coherent, quasi-coherent, and incoherent. Measurements with a multiple-input multiple-output (MIMO) radar at 150GHz prove that despite 150 GHz prove that despite a non-coherent signal distribution, it is possible to achieve the same detection and imaging performance as with a fully coherent radar by using a DDS.



https://doi.org/10.1109/JMW.2022.3154886
Zhang, Junxi; Zhao, Huaping; Gong, Ming; Zhang, Lide; Yan, Zhijun; Xie, Kang; Fei, Guangtao; Zhu, Xiaoguang; Kong, Mingguang; Zhang, Shuyuan; Zhang, Lin; Lei, Yong
Revealing the truncated conical geometry of nanochannels in anodic aluminium oxide membranes. - In: Nanoscale, ISSN 2040-3372, Bd. 14 (2022), 14, S. 5356-5368

Anodic aluminium oxide (AAO) membranes with self-ordered nanochannels have become promising candidates for applications in the aspects such as structural coloration, photonic crystals, upconversion luminescence and nanofluidic transport. Also, self-ordered AAO membranes have been extensively used for the fabrication of functional nanostructures such as nanowires, nanotubes, nanoparticles, nanorods and nanopillars. Geometries of nanochannels are crucial for the applications of AAO membranes as well as controlling growth (e.g., nucleation, direction and morphology) and in applications (e.g., optics, magnetics, thermoelectrics, biology, medicine, sensing, and energy conversion and storage) of the functional nanostructures fabricated via AAO template-based methods. However, observation of whole nanochannels with nanometer-resolution in thick AAO membranes remains a fundamental challenge, and the nanochannel geometry has not yet been sufficiently elucidated. Here, for the first time, we use depth-profiling transmission electron microscopy to reveal the truncated conical geometry of whole nanochannels of 70 [my]m in length. Such shape nonuniformity of the nanochannels leads to different reflectance properties of the different depths of the nanochannels along their long axis for one AAO membrane, which suggests that the nonuniformity result in some effects on applications of the nanostructures. Furthermore, we introduce a shape factor to evaluate the shape nonuniformity and demonstrate that the nonuniformity can be remarkably removed by an effective etching method based on a temperature gradient regime.



https://doi.org/10.1039/D2NR01006B
Reum, Thomas; Töpfer, Hannes
Investigation of electromagnetic wave propagation in the bicomplex 3D-FEM using a wavenumber Whitney Hodge operator. - In: Compel, ISSN 2054-5606, Bd. 41 (2022), 3, S. 996-1010

Purpose - The purpose of this paper is to show the applicability of a discrete Hodge operator in the context of the De Rham cohomology to bicomplex-valued electromagnetic wave propagation problems. It was applied in the finite element method (FEM) to get a higher accuracy through conformal discretization. Therewith, merely the primal mesh is needed to discretize the full system of Maxwell equations. Design/methodology/approach - At the beginning, the theoretical background is presented. The bicomplex number system is used as a geometrical algebra to describe three-dimensional electromagnetic problems. Because we treat rotational field problems, Whitney edge elements are chosen in the FEM to realize a conformal discretization. Next, numerical simulations regarding practical wave propagation problems are performed and compared with the common FEM approach using the Helmholtz equation. Findings - Different field problems of three-dimensional electromagnetic wave propagation are treated to present the merits and shortcomings of the method, which calculates the electric and magnetic field at the same spatial location on a primal mesh. A significant improvement in accuracy is achieved, whereas fewer essential boundary conditions are necessary. Furthermore, no numerical dispersion is observed. Originality/value - A novel Hodge operator, which acts on bicomplex-valued cotangential spaces, is constructed and discretized as an edge-based finite element matrix. The interpretation of the proposed geometrical algebra in the language of the De Rham cohomology leads to a more comprehensive viewpoint than the classical treatment in FEM. The presented paper may motivate researchers to interpret the form of number system as a degree of freedom when modeling physical effects. Several relationships between physical quantities might be inherently implemented in such an algebra.



https://doi.org/10.1108/COMPEL-03-2021-0078
Xu, Rui; Zeng, Zhiqiang; Lei, Yong
Well-defined nanostructuring with designable anodic aluminum oxide template. - In: Nature Communications, ISSN 2041-1723, Bd. 13 (2022), 2435, S. 1-11

Well-defined nanostructuring over size, shape, spatial configuration, and multi-combination is a feasible concept to reach unique properties of nanostructure arrays, while satisfying such broad and stringent requirements with conventional techniques is challenging. Here, we report designable anodic aluminium oxide templates to address this challenge by achieving well-defined pore features within templates in terms of in-plane and out-of-plane shape, size, spatial configuration, and pore combination. The structural designability of template pores arises from designing of unequal aluminium anodization rates at different anodization voltages, and further relies on a systematic blueprint guiding pore diversification. Starting from the designable templates, we realize a series of nanostructures that inherit equal structural controllability relative to their template counterparts. Proof-of-concept applications based on such nanostructures demonstrate boosted performance. In light of the broad selectivity and high controllability, designable templates will provide a useful platform for well-defined nanostructuring.



https://doi.org/10.1038/s41467-022-30137-6
Pabst, Markus; Darnieder, Maximilian; Theska, René; Fröhlich, Thomas
Adjustment concept for compensating for stiffness and tilt sensitivity of a novel monolithic electromagnetic force compensation (EMFC) weighing cell. - In: Journal of sensors and sensor systems, ISSN 2194-878X, Bd. 11 (2022), 1, S. 109-116

This paper describes the new adjustment concept of novel planar, monolithic, high-precision electromagnetic force compensation weighing cells. The concept allows the stiffness and the tilt sensitivity of the compliant mechanisms that are dependent on the nominal load on the weighing pan to be adjusted to an optimum. The new mechanism is set up and adjusted according to the developed mechanical model. For evaluation of the concept the system is tested on a high-precision tilt table and under high vacuum conditions in the environment of a commercially available mass comparator.



https://doi.org/10.5194/jsss-11-109-2022
Visaveliya, Nikunjkumar R.; Mazétyté-Stasinskiené, Raminta; Köhler, Michael
Stationary, continuous, and sequential surface-enhanced raman scattering sensing based on the nanoscale and microscale polymer-metal composite sensor particles through microfluidics: a review. - In: Advanced optical materials, ISSN 2195-1071, Bd. 10 (2022), 7, 2102757, S. 1-25

Surface-enhanced Raman scattering (SERS) is a label-free and accurate analytical technique for the detection of a broad range of various analytes such as, biomolecules, pesticides, petrochemicals, as well as, cellular and other biological systems. A key component for the SERS analysis is the substrate which is required to be equipped with plasmonic features of metal nanostructures that directly interact with light and targeted analytes. Either metal nanoparticles can be deposited on the solid support (glass or silicon) which is suitable for stationary SERS analysis or dispersed in the solution (freely moving nanoparticles). Besides these routinely utilizing SERS substrates, polymer-metal composite particles are promising for sustained SERS analysis where metal nanoparticles act as plasmon-active (hence SERS-active) components and polymer particles act as support to the metal nanoparticles. Composite sensor particles provide 3D interaction possibilities for analytes, suitable for stationary, continuous, and sequential analysis, and they are reusable/regenerated. Therefore, this review is focused on the experimental procedures for the development of multiscale, uniform, and reproducible composite sensor particles together with their application for SERS analysis. The microfluidic reaction technique is highly versatile in the production of uniform and size-tunable composite particles, as well as, for conducting SERS analysis.



https://doi.org/10.1002/adom.202102757
Simon, Rowena; Schwanengel, Linda; Klemm, Matthias; Meller, Daniel; Hammer, Martin
Spectral fundus autofluorescence peak emission wavelength in ageing and AMD. - In: Acta ophthalmologica, ISSN 1755-3768, Bd. 100 (2022), 6, S. e1223-e1231

Purpose To investigate the spectral characteristics of fundus autofluorescence (FAF) in AMD patients and controls. Methods Fundus autofluorescence spectral characteristics was described by the peak emission wavelength (PEW) of the spectra. Peak emission wavelength (PEW) was derived from the ratio of FAF recordings in two spectral channels at 500-560 nm and 560-720 nm by fluorescence lifetime imaging ophthalmoscopy. The ratio of FAF intensity in both channels was related to PEW by a calibration procedure. Peak emission wavelength (PEW) measurements were done in 44 young (mean age: 24.0 ± 3.8 years) and 18 elderly (mean age: 67.5 ± 10.2 years) healthy subjects as well as 63 patients with AMD (mean age: 74.0 ± 7.3 years) in each pixel of a 30˚ imaging field. The values were averaged over the central area, the inner and the outer ring of the ETDRS grid. Results There was no significant difference between PEW in young and elderly controls. However, PEW was significantly shorter in AMD patients (ETDRS grid centre: 571 ± 26 nm versus 599 ± 17 nm for elderly controls, inner ring: 596 ± 17 nm versus 611 ± 11 nm, outer ring: 602 ± 16 nm versus 614 ± 11 nm). After a mean follow-up time of 50.8 ± 10.8 months, the PEW in the patients decreased significantly by 9 ± 19 nm in the inner ring of the grid. Patients, showing progression to atrophic AMD in the follow up, had significantly (p ≤ 0.018) shorter PEW at baseline than non-progressing patients. Conclusions Peak emission wavelength (PEW) is related to AMD pathology and might be a diagnostic marker in AMD. Possibly, a short PEW can predict progression to retinal and/or pigment epithelium atrophy.



https://doi.org/https://doi.org/10.1111/aos.15070
Mir, Amir; Luo, Xichun; Llavori, Iñigo; Roy, Anish; Labus Zlatanovic, Danka; Joshi, Shrikrishna N.; Goel, Saurav
Challenges and issues in continuum modelling of tribology, wear, cutting and other processes involving high-strain rate plastic deformation of metals. - In: Journal of the mechanical behavior of biomedical materials, ISSN 1878-0180, Bd. 130 (2022), 105185, S. 1-24

Contribution of finite element method (FEM) as a modelling and simulation technique to represent complex tribological processes has improved our understanding about various biomaterials. This paper presents a review of the advances in the domain of finite element (FE) modelling for simulating tribology, wear, cutting and other processes involving high-strain rate plastic deformation of metals used in bio tribology and machining. Although the study is largely focused on material removal cases in metals, the modelling strategies can be applied to a wide range of other materials. This study discusses the development of friction models, meshing and remeshing strategies, and constitutive material models. The mesh-based and meshless formulations employed for bio tribological simulations with their advantages and limitations are also discussed. The output solution variables including scratch forces, local temperature, residual stresses are analyzed as a function of input variables.



https://doi.org/10.1016/j.jmbbm.2022.105185
Yuile, Adam; Schulz, Alexander; Wiss, Erik; Müller, Jens; Wiese, Steffen
The simulated effect of adding solder layers on reactive multilayer films used for joining processes. - In: Applied Sciences, ISSN 2076-3417, Bd. 12 (2022), 5, 2397, S. 1-17

In order to introduce new bonding methods in the area of electronic packaging a theoretical analysis was conducted, which should give substantial information about the potential of reactive multilayer systems (rms) to create sufficient local heat for joining processes between silicon chips and ceramic substrates. For this purpose, thermal CFD (computational fluid dynamics) simulations have been carried out to simulate the temperature profile of the bonding zone during and after the reaction of the rms. This thermal analysis considers two different configurations. The first configuration consists of a silicon chip that is bonded to an LTCC-substrate (Low Temperature Co-fired Ceramics) using a bonding layer that contains an rms and a solder preform. The reaction propagation speed of the reactive multilayer was set to a value of 1 m/s, in order to partially melt a solder preform underneath a silicon chip. The second configuration, which consists only of the LTCC-substrate and the rms, was chosen to study the differences between the thermal outputs of the two arrangements. The analysis of the CFD simulations was particularly focused on interpretations of the temperature and liquid fraction contours. The CFD thermal simulation analysis conducted contains a melting/solidification model which can track the molten/solid state of the solder in addition to modelling the influence of latent heat. To provide information for the design of a test-substrate for experimental investigations, the real behaviour of Pt-100 temperature probes on the LTCC-substrate was simulated, in order to monitor an actual bonding in the experiment. All simulations were carried out using the ANSYS Fluent software.



https://doi.org/10.3390/app12052397