Zeitschriftenaufsätze ab 2018

Anzahl der Treffer: 1679
Erstellt: Sun, 30 Jun 2024 22:28:27 +0200 in 0.1150 sec


Visaveliya, Nikunjkumar R.; Mazétyté-Stasinskiené, Raminta; Köhler, Michael
General background of SERS sensing and perspectives on polymer-supported plasmon-active multiscale and hierarchical sensor particles. - In: Advanced optical materials, ISSN 2195-1071, Bd. 10 (2022), 4, 2102001, S. 1-27

Surface-enhanced Raman scattering (SERS) is one of the most powerful analytical techniques for the identification of molecules. The substrate, on which SERS is dependent, contains regions of nanoscale gaps (hotspots) that hold the ability to concentrate incident electromagnetic fields and effectively amplify vibrational scattering signals of adsorbed analytes. While surface plasmon resonance from metal nanostructures is a central focus for the SERS effect, the support of polymers can be significantly advantageous to provide larger exposure of structured metal surfaces for efficient interactions with analytes. Characteristics of the polymer particles such as softness, flexibility, swellability, porosity, optical transparency, metal-loading ability, and high surface area can allow diffusion of analytes and penetrating light deeply that can enormously amplify sensing outcomes. As polymer-supported plasmon-active sensor particles can emerge as versatile SERS substrates, the microfluidic platform is promising for the generation of sensor particles as well as for performing sequential SERS analysis of multiple analytes. Therefore, in this perspective article, the development of multifunctional polymer-metal composite particles, and their applications as potential sensors for SERS sensing through microfluidics are presented. A detailed background from the beginning of the SERS field and perspectives for the multifunctional sensor particles for efficient SERS sensing are provided.



https://doi.org/10.1002/adom.202102001
Hülser, Tobias; Köster, Felix; Jaurigue, Lina; Lüdge, Kathy
Role of delay-times in delay-based photonic reservoir computing. - In: Optical materials express, ISSN 2159-3930, Bd. 12 (2022), 3, S. 1214-1231

Delay-based reservoir computing has gained a lot of attention due to the relative simplicity with which this concept can be implemented in hardware. However, unnecessary constraints are commonly placed on the relationship between the delay-time and the input clock-cycle, which can have a detrimental effect on the performance. We review the existing literature on this subject and introduce the concept of delay-based reservoir computing in a manner that demonstrates that no predefined relationship between the delay-time and the input clock-cycle is required for this computing concept to work. Choosing the delay-times independent of the input clock-cycle, one gains an important degree of freedom. Consequently, we discuss ways to improve the computing performance of a reservoir formed by delay-coupled oscillators and show the impact of delay-time tuning in such systems.



https://doi.org/10.1364/OME.451016
Smyrnova, Kateryna; Sahul, Martin; Haršáni, Marián; Pogrebnjak, Aleksandr Dmitrievič; Ivashchenko, Volodymyr; Beresnev, Vyacheslav; Stolbovoy, Vyacheslav; Čaplovič, &hacek;Lubomír; Čaplovičová, Mária; Vančo, &hacek;Lubomír; Kusý, Martin; Kassymbaev, Alexey; Satrapinskyy, Leonid; Flock, Dominik
Microstructure, mechanical and tribological properties of advanced layered WN/MeN (Me = Zr, Cr, Mo, Nb) nanocomposite coatings. - In: Nanomaterials, ISSN 2079-4991, Bd. 12 (2022), 3, 395, S. 1-23

Due to the increased demands for drilling and cutting tools working at extreme machining conditions, protective coatings are extensively utilized to prolong the tool life and eliminate the need for lubricants. The present work reports on the effect of a second MeN (Me = Zr, Cr, Mo, Nb) layer in WN-based nanocomposite multilayers on microstructure, phase composition, and mechanical and tribological properties. The WN/MoN multilayers have not been studied yet, and cathodic-arc physical vapor deposition (CA-PVD) has been used to fabricate studied coating systems for the first time. Moreover, first-principles calculations were performed to gain more insight into the properties of deposited multilayers. Two types of coating microstructure with different kinds of lattices were observed: (i) face-centered cubic (fcc) on fcc-W2N (WN/CrN and WN/ZrN) and (ii) a combination of hexagonal and fcc on fcc-W2N (WN/MoN and WN/NbN). Among the four studied systems, the WN/NbN had superior properties: the lowest specific wear rate (1.7 × 10^-6 mm^3/Nm) and high hardness (36 GPa) and plasticity index H/E (0.93). Low surface roughness, high elastic strain to failure, Nb2O5 and WO3 tribofilms forming during sliding, ductile behavior of NbN, and nanocomposite structure contributed to high tribological performance. The results indicated the suitability of WN/NbN as a protective coating operating in challenging conditions.



https://doi.org/10.3390/nano12030395
Karmo, Marsel; Ruiz Alvarado, Isaac Azahel; Schmidt, W. Gero; Runge, Erich
Reconstructions of the As-terminated GaAs(001) surface exposed to atomic hydrogen. - In: ACS omega, ISSN 2470-1343, Bd. 7 (2022), 6, S. 5064-5068

We explore the atomic structures and electronic properties of the As-terminated GaAs(001) surface in the presence of hydrogen based on ab initio density functional theory. We calculate a phase diagram dependent on the chemical potentials of As and H, showing which surface reconstruction is the most stable for a given set of chemical potentials. The findings are supported by the calculation of energy landscapes of the surfaces, which indicate possible H bonding sites as well as the density of states, which show the effect of hydrogen adsorption on the states near the fundamental band gap.



https://doi.org/10.1021/acsomega.1c06019
Seibold, Marc; Schricker, Klaus; Bergmann, Jean Pierre
Systematic adjustment of the joining time in pulsed laser beam welding of aluminum-copper joints by means of a closed-loop control. - In: Journal of advanced joining processes, ISSN 2666-3309, Bd. 5 (2022), 100104, S. 1-6

Electric mobility has become increasingly important in recent years. For this purpose, the use of copper is essential due to its electrical properties. In order to save weight and costs, copper is replaced by aluminum in many electrical conductors.In this paper, the required joining time for pulsed laser beam welding of aluminum-copper joints is investigated to minimize the mixing of both materials. By using an external controller and photodiodes, it was possible to develop a real-time pulse control laser welding process based on process emissions. The spectral emission was used to detect when the lower joining partner is reached during the deep welding process. The control enables the adjustment of different joining times, on the one hand by a signal drop of the spectral emission, on the other hand by a specific time. The laser pulse was terminated between 500 - 800 [my]s after reaching this event. This led to differences in process conditions, resulting in significant changes in mechanical properties. In this way, a decisive influence was exerted on the resulting joining zone. The interaction duration and the work piece transition are of primary interest. By comparing the results with high-speed recordings in the half-section set-up, the resulting mechanisms can be identified. It could be shown that the breakup time have an high impact for the shear tensile force and the welding depth. A Change in the breakup time of 40 [my]s could lead to high changes in the tensile shear force.



https://doi.org/10.1016/j.jajp.2022.100104
Chnani, Ahmed; Kurniawan, Mario; Bund, Andreas; Strehle, Steffen
Nanometer-thick hematite films as photoanodes for solar water splitting. - In: ACS applied nano materials, ISSN 2574-0970, Bd. 5 (2022), 2, S. 2897-2905

Photoelectrochemical (PEC) water splitting is one of the most promising sustainable methods for feasible solar hydrogen production. However, this method is still impractical due to the lack of suitable photoanode materials that are efficient, stable, and cost-effective. Here, we present a surprisingly simple fabrication method for efficient, stable, and cost-effective nanometer-thick hematite films utilizing a rapid, ambient annealing approach. In the oxygen evolution reaction, the fabricated hematite films exhibit a Faradaic efficiency of 99.8% already at 1 V versus the reversible hydrogen electrode (RHE), a real photocurrent density of 2.35 mA cm-2 at 1.23 V versus RHE, and a superior photo-oxidation stability recorded for over 1000 h. Considering the active surface area, the measured photocurrent density is higher than any value achieved so far by hematite and other single-material thin-film photoanodes. Hence, we show for the first time that undoped hematite thin films can compete with doped hematite and other semiconductor materials.



https://doi.org/10.1021/acsanm.2c00095
Nozdrenko, Dmytro; Prylutska, Svitlana; Bogutska, Kateryna; Nurishchenko, Natalia Y.; Abramchuk, Olga; Motuziuk, Olexandr; Prylutskyy, Yuriy; Scharff, Peter; Ritter, Uwe
Effect of C60 fullerene on recovery of muscle soleus in rats after atrophy induced by achillotenotomy. - In: Life, ISSN 2075-1729, Bd. 12 (2022), 3, 332, S. 1-13

Biomechanical and biochemical changes in the muscle soleus of rats during imitation of hind limbs unuse were studied in the model of the Achilles tendon rupture (Achillotenotomy). Oral administration of water-soluble C60 fullerene at a dose of 1 mg/kg was used as a therapeutic agent throughout the experiment. Changes in the force of contraction and the integrated power of the muscle, the time to reach the maximum force response, the mechanics of fatigue processes development, in particular, the transition from dentate to smooth tetanus, as well as the levels of pro- and antioxidant balance in the blood of rats on days 15, 30 and 45 after injury were described. The obtained results indicate a promising prospect for C60 fullerene use as a powerful antioxidant for reducing and correcting pathological conditions of the muscular system arising from skeletal muscle atrophy.



https://doi.org/10.3390/life12030332
Mytiliniou, Maria; Wondergem, Joeri A. J.; Schmidt, Thomas; Heinrich, Doris
Impact of neurite alignment on organelle motion. - In: Interface, ISSN 1742-5662, Bd. 19 (2022), 187, 20210617, S. 1-13

Intracellular transport is pivotal for cell growth and survival. Malfunctions in this process have been associated with devastating neurodegenerative diseases, highlighting the need for a deeper understanding of the mechanisms involved. Here, we use an experimental methodology that leads neurites of differentiated PC12 cells into either one of two configurations: a one-dimensional configuration, where the neurites align along lines, or a two-dimensional configuration, where the neurites adopt a random orientation and shape on a flat substrate. We subsequently monitored the motion of functional organelles, the lysosomes, inside the neurites. Implementing a time-resolved analysis of the mean-squared displacement, we quantitatively characterized distinct motion modes of the lysosomes. Our results indicate that neurite alignment gives rise to faster diffusive and super-diffusive lysosomal motion than the situation in which the neurites are randomly oriented. After inducing lysosome swelling through an osmotic challenge by sucrose, we confirmed the predicted slowdown in diffusive mobility. Surprisingly, we found that the swelling-induced mobility change affected each of the (sub-/super-)diffusive motion modes differently and depended on the alignment configuration of the neurites. Our findings imply that intracellular transport is significantly and robustly dependent on cell morphology, which might in part be controlled by the extracellular matrix.



https://doi.org/10.1098/rsif.2021.0617
Gester, Andreas; Wagner, Guntram; Pöthig, Pascal; Bergmann, Jean Pierre; Fritzsche, Marco
Analysis of the oscillation behavior during ultrasonic welding of EN AW-1070 wire strands and EN CW004A terminals. - In: Welding in the world, ISSN 1878-6669, Bd. 66 (2022), 3, S. 567-576

For fulfilling the demand of durable yet lightweight electrical connections in transportation industries, ultrasonic metal welding (USMW) sees widespread use in these branches. As the ultrasound oscillations utilized in the welding procedure occur at a range of only a few micrometers at frequencies of 20-100 kHz for an overall duration of only 50-1500 ms, it is not possible to observe the compaction behavior with the bare eye. This paper focusses on investigating the oscillation behavior of the horn, the anvil, and the joining partners during the welding procedure by utilizing an array of synchronized laser vibrometers and performing welds with incrementing time stages. The oscillation data is correlated with temperature measurements in the welding zone as well as tensile testing results. Inter alia the formation of sidebands at the fundamental frequency as well as 2nd- and 3rd-order harmonics has been observed for the anvil, terminal, and wire front face when exceeding optimal weld time which would lead to maximum joint strength. Following the assumption of other research groups, the cause of these sidebands could be a change in relative motion of these components. As the terminal is slipping with increasing weld time, it could be assumed that the reason for the sidebands is low-frequency movement of the anvil, modulated onto the fundamental frequency, additionally indicating successful bonding of the stranded wire and the terminal. Furthermore, this slipping of the terminal on the anvil could lead to increased wear of the anvil knurls.



https://doi.org/10.1007/s40194-021-01222-z
Wagner, Christoph; Semper, Sebastian; Kirchhof, Jan
fastmat: efficient linear transforms in Python. - In: SoftwareX, ISSN 2352-7110, Bd. 18 (2022), 101013, S. 1-8

Scientific computing requires handling large linear models, which are often composed of structured matrices. With increasing model size, dense representations quickly become infeasible to compute or store. Matrix-free implementations are suited to mitigate this problem at the expense of additional implementation overhead, which complicates research and development effort by months, when applied to practical research problems. Fastmat is a framework for handling large structured matrices by offering an easy-to-use abstraction model. It allows for the expression of matrix-free linear operators in a mathematically intuitive way, while retaining their benefits in computation performance and memory efficiency. A built-in hierarchical unit-test system boosts debugging productivity and run-time execution path optimization improves the performance of highly-structured operators. The architecture is completed with an interface for abstractly describing algorithms that apply such matrix-free linear operators, while maintaining clear separation of their respective implementation levels. Fastmat achieves establishing a close relationship between implementation code and the actual mathematical notation of a given problem, promoting readable, portable and re-usable scientific code.



https://doi.org/10.1016/j.softx.2022.101013