Zeitschriftenaufsätze ab 2018

Anzahl der Treffer: 1679
Erstellt: Sun, 30 Jun 2024 22:28:27 +0200 in 0.1163 sec


Labus Zlatanovic, Danka; Bergmann, Jean Pierre; Balos, Sebastian; Gräzel, Michael; Pejic, Dragan; Sovilj, Platon; Goel, Saurav
Influence of rotational speed on the electrical and mechanical properties of the friction stir spot welded aluminium alloy sheets. - In: Welding in the world, ISSN 1878-6669, Bd. 66 (2022), 6, S. 1179-1190

An efficient and productive joining technique to weld aluminium has become a priority challenge for promoting the use of aluminium in the electrical industry. One of the challenges is to obtain welds with superior mechanical properties with the consistent quality of weld surface as well as low electrical resistance. In this paper, the influence of rotational speed during the friction stir spot welding of AA 5754-H111 was studied to analyse the mechanical and electrical properties of the welds. The results from two rotational speeds (1000 rpm and 4500 rpm) are presented and compared to the base material. It was observed that the samples welded at 1000 rpm showed a higher average shear failure load (˜ 1.1 kN) compared to the samples welded at 4500 rpm (˜ 0.94 kN). The microhardness of the samples welded at 1000 rpm was higher than that of the base material, while the microhardness of samples welded at 4500 rpm was lower. It was also found that the friction welded sheets, regardless of the rotational speed used, showed increased electrical resistance compared to the base material, albeit this increase for the samples welded at 1000 rpm was about 42%, compared to samples welded at 4500 rpm where this increase was just 14%.



https://doi.org/10.1007/s40194-022-01267-8
Link, Steffen; Dimitrova, Anna; Krischok, Stefan; Ivanov, Svetlozar
Reversible sodiation of electrochemically deposited binder- and conducting additive-free Si-O-C composite layers. - In: Energy technology, ISSN 2194-4296, Bd. 10 (2022), 5, 2101164, S. 1-9

Binder- and conducting additive-free Si-O-C composite layers are deposited electrochemically under potentiostatic conditions from sulfolane-based organic electrolyte. Quartz crystal microbalance with damping monitoring is used for evaluation of the layer growth and its physical properties. The sodiation-desodiation performance of the material is afterward explored in Na-ion electrolyte. In terms of specific capacity, rate capability, and long-term electrochemical stability, the experiments confirm the advantages of applying the electrochemically formed Si-O-C structure as anode for Na-ion batteries. The material displays high (722 mAh g^-1) initial reversible capacity at j = 70 mA g^-1 and preserves stable long-term capacity of 540 mAh g^-1 for at least 400 galvanostatic cycles, measured at j = 150 mA g^-1. The observed high performance can be attributed to its improved mechanical stability and accelerated Na-ion transport in the porous anode structure. The origin of the material electroactivity is revealed based on X-Ray photoelectron spectroscopic analysis of pristine (as deposited), sodiated, and desodiated Si-O-C layers. The evaluation of the spectroscopic data indicates reversible activity of the material due to the complex contribution of carbon and silicon redox centers.



https://doi.org/10.1002/ente.202101164
Yang, Guowei; Wu, Yuhan; Fu, Qun; Zhao, Huaping; Lei, Yong
Nanostructured metal selenides as anodes for potassium-ion batteries. - In: Sustainable energy & fuels, ISSN 2398-4902, Bd. 6 (2022), 9, S. 2087-2112

In next-generation rechargeable batteries, potassium-ion batteries (KIBs) have been deemed to be one of the most promising candidates as a complement for lithium-ion batteries. Anodes as a component of ion batteries have a great effect on the safety and electrochemical performance. Among various developed anode materials, metal selenides (MSs) have been a popular option by merits of their superior material properties and high specific capacities. However, they are restricted by some intrinsic problems, such as large volume expansion and severe side reactions during electrochemical reactions, which limit their application to a certain degree. The strategy of structural design can endow MSs with superior material and electrochemical properties, making MSs exhibit better electrochemical performance. In this review, we summarize the recent advances in nanostructured MCs as KIB anodes. Meanwhile, their electrochemical reaction mechanisms and material synthesis methods are introduced briefly. Finally, the present challenges and future research directions are discussed.



https://doi.org/10.1039/D2SE00067A
Zhang, Ying; Tao, Jie; Zhang, Chenglin; Zhao, Huaping; Lei, Yong
KOH activated nitrogen and oxygen co-doped tubular carbon clusters as anode material for boosted potassium-ion storage capability. - In: Nanotechnology, ISSN 1361-6528, Bd. 33 (2022), 29, 295403, S. 1-9

Carbon nanomaterials have become a promising anode material for potassium-ion batteries (KIBs) due to their abundant resources, low cost, and excellent conductivity. However, among carbon materials, the sluggish reaction kinetics and inferior cycle life severely restrict their commercial development as KIBs anodes. It is still a huge challenge to develop carbon materials with various structural advantages and ideal electrochemical properties. Therefore, it is imperative to find a carbon material with heteroatom doping and suitable nanostructure to achieve excellent electrochemical performance. Benefiting from a Na2SO4 template-assisted method and KOH activation process, the KOH activated nitrogen and oxygen co-doped tubular carbon (KNOCTC) material with a porous structure exhibits an impressive reversible capacity of 343 mAh g^-1 at 50 mA g^-1 and an improved cyclability of 137 mAh g^-1 at 2 A g^-1 after 3000 cycles with almost no capacity decay. The kinetic analysis indicates that the storage mechanism in KNOCTC is attributed to the pseudocapacitive process during cycling. Furthermore, the new synthesis route of KNOCTC provides a new opportunity to explore carbon-based potassium storage anode materials with high capacity and cycling performance.



https://doi.org/10.1088/1361-6528/ac6527
Bača, Martin; Brauer, Dana; Klett, Maren; Fernekorn, Uta; Singh, Sukhdeep; Hampl, Jörg; Groß, Gregor Alexander; Mai, Patrick; Friedel, Karin; Schober, Andreas
Automated analysis of acetaminophen toxicity on 3D HepaRG cell culture in microbioreactor. - In: Bioengineering, ISSN 2306-5354, Bd. 9 (2022), 5, 196, S. 1-16

Real-time monitoring of bioanalytes in organotypic cell cultivation devices is a major research challenge in establishing stand-alone diagnostic systems. Presently, no general technical facility is available that offers a plug-in system for bioanalytics in diversely available organotypic culture models. Therefore, each analytical device has to be tuned according to the microfluidic and interface environment of the 3D in vitro system. Herein, we report the design and function of a 3D automated culture and analysis device (3D-ACAD) which actively perfuses a custom-made 3D microbioreactor, samples the culture medium and simultaneously performs capillary-based flow ELISA. A microstructured MatriGrid® has been explored as a 3D scaffold for culturing HepaRG cells, with albumin investigated as a bioanalytical marker using flow ELISA. We investigated the effect of acetaminophen (APAP) on the albumin secretion of HepaRG cells over 96 h and compared this with the albumin secretion of 2D monolayer HepaRG cultures. Automated on-line monitoring of albumin secretion in the 3D in vitro mode revealed that the application of hepatotoxic drug-like APAP results in decreased albumin secretion. Furthermore, a higher sensitivity of the HepaRG cell culture in the automated 3D-ACAD system to APAP was observed compared to HepaRG cells cultivated as a monolayer. The results support the use of the 3D-ACAD model as a stand-alone device, working in real time and capable of analyzing the condition of the cell culture by measuring a functional analyte. Information obtained from our system is compared with conventional cell culture and plate ELISA, the results of which are presented herein.



https://doi.org/10.3390/bioengineering9050196
Beliautsou, Aleksandra; Beliautsou, Viktar; Zimmermann, Armin
Colored Petri net modelling and evaluation of drone inspection methods for distribution networks. - In: Sensors, ISSN 1424-8220, Bd. 22 (2022), 9, 3418, S. 1-20

https://doi.org/10.3390/s22093418
Weise, Konstantin; Müller, Erik; Poßner, Lucas; Knösche, Thomas R.
Comparison of the performance and reliability between improved sampling strategies for polynomial chaos expansion. - In: Mathematical biosciences and engineering, ISSN 1551-0018, Bd. 19 (2022), 8, S. 7425-7480

As uncertainty and sensitivity analysis of complex models grows ever more important, the difficulty of their timely realizations highlights a need for more efficient numerical operations. Non-intrusive Polynomial Chaos methods are highly efficient and accurate methods of mapping input-output relationships to investigate complex models. There is substantial potential to increase the efficacy of the method regarding the selected sampling scheme. We examine state-of-the-art sampling schemes categorized in space-filling-optimal designs such as Latin Hypercube sampling and L1-optimal sampling and compare their empirical performance against standard random sampling. The analysis was performed in the context of L1 minimization using the least-angle regression algorithm to fit the GPCE regression models. Due to the random nature of the sampling schemes, we compared different sampling approaches using statistical stability measures and evaluated the success rates to construct a surrogate model with relative errors of < 0.1 %, < 1 %, and < 10 %, respectively. The sampling schemes are thoroughly investigated by evaluating the y of surrogate models constructed for various distinct test cases, which represent different problem classes covering low, medium and high dimensional problems. Finally, the sampling schemes are tested on an application example to estimate the sensitivity of the self-impedance of a probe that is used to measure the impedance of biological tissues at different frequencies. We observed strong differences in the convergence properties of the methods between the analyzed test functions.



https://doi.org/10.3934/mbe.2022351
Feldhoff, Frank; Töpfer, Hannes; Harczos, Tamas; Klefenz, Frank
Periodicity pitch perception part III: sensibility and Pachinko volatility. - In: Frontiers in neuroscience, ISSN 1662-453X, Bd. 16 (2022), 736642, S. 1-15

Neuromorphic computer models are used to explain sensory perceptions. Auditory models generate cochleagrams, which resemble the spike distributions in the auditory nerve. Neuron ensembles along the auditory pathway transform sensory inputs step by step and at the end pitch is represented in auditory categorical spaces. In two previous articles in the series on periodicity pitch perception an extended auditory model had been successfully used for explaining periodicity pitch proved for various musical instrument generated tones and sung vowels. In this third part in the series the focus is on octopus cells as they are central sensitivity elements in auditory cognition processes. A powerful numerical model had been devised, in which auditory nerve fibers (ANFs) spike events are the inputs, triggering the impulse responses of the octopus cells. Efficient algorithms are developed and demonstrated to explain the behavior of octopus cells with a focus on a simple event-based hardware implementation of a layer of octopus neurons. The main finding is, that an octopus’ cell model in a local receptive field fine-tunes to a specific trajectory by a spike-timing-dependent plasticity (STDP) learning rule with synaptic pre-activation and the dendritic back-propagating signal as post condition. Successful learning explains away the teacher and there is thus no need for a temporally precise control of plasticity that distinguishes between learning and retrieval phases. Pitch learning is cascaded: At first octopus cells respond individually by self-adjustment to specific trajectories in their local receptive fields, then unions of octopus cells are collectively learned for pitch discrimination. Pitch estimation by inter-spike intervals is shown exemplary using two input scenarios: a simple sinus tone and a sung vowel. The model evaluation indicates an improvement in pitch estimation on a fixed time-scale.



https://doi.org/10.3389/fnins.2022.736642
Cheng, Pengfei; Ziegler, Mario; Ripka, Valentin; Wang, Honglei; Pollok, Kilian; Langenhorst, Falko; Wang, Dong; Schaaf, Peter
Black silver: three-dimensional Ag hybrid plasmonic nanostructures with strong photon coupling for scalable photothermoelectric power generation. - In: ACS applied materials & interfaces, ISSN 1944-8252, Bd. 14 (2022), 14, S. 16894-16900

The conversion of solar energy into electric power has been extensively studied, for example, by photovoltaics. However, photo-thermoelectric (P-TE) conversion as an effective solar-to-electricity conversion process is less studied. Here, we present an efficient full-solar-spectrum plasmonic absorber for scalable P-TE conversion based on a simple integration of light absorber and commercial thermoelectric modules. Our developed light absorber of silica-silver hybrid structures achieves an average absorption of 99.4% in the wavelength range from 200 to 2500 nm, which covers over 98% solar energy in this range. It thus appears fully matte black and is named black silver. The light absorber includes a hierarchical structure with Ag nanoparticles attached on three-dimensional SiO2 nanostructures, resulting in ultrahigh absorption. Strong localized surface plasmon resonance hybridization together with multiple scattering causes the perfect light absorption. Using the black silver as a light absorber for P-TE power generation, it can achieve a peak voltage density as high as 82.5 V m-2 under a solar intensity of 100 mW cm-2, which is large enough to power numerous electronic devices. By assembling 20 thermoelectric modules in series, we test their possibility of practical application, and they can also achieve an average voltage density of 70.66 V m-2. Our work opens up a promising technology that facilitates high-efficiency and scalable solar energy conversion via the P-TE effect.



https://doi.org/10.1021/acsami.2c01181
Tong, Ciqing; Wondergem, Joeri A. J.; van den Brink, Marijn; Kwakernaak, Markus C.; Chen, Ying; Hendrix, Marco M. R. M.; Voets, Ilja K.; Danen, Erik Hendrik Julius; Le Dévédec, Sylvia; Heinrich, Doris; Kieltyka, Roxanne E.
Spatial and temporal modulation of cell instructive cues in a filamentous supramolecular biomaterial. - In: ACS applied materials & interfaces, ISSN 1944-8252, Bd. 14 (2022), 15, S. 17042-17054

Supramolecular materials provide unique opportunities to mimic both the structure and mechanics of the biopolymer networks that compose the extracellular matrix. However, strategies to modify their filamentous structures in space and time in 3D cell culture to study cell behavior as encountered in development and disease are lacking. We herein disclose a multicomponent squaramide-based supramolecular material whose mechanics and bioactivity can be controlled by light through co-assembly of a 1,2-dithiolane (DT) monomer that forms disulfide cross-links. Remarkably, increases in storage modulus from ∼200 Pa to >10 kPa after stepwise photo-cross-linking can be realized without an initiator while retaining colorlessness and clarity. Moreover, viscoelasticity and plasticity of the supramolecular networks decrease upon photo-irradiation, reducing cellular protrusion formation and motility when performed at the onset of cell culture. When applied during 3D cell culture, force-mediated manipulation is impeded and cells move primarily along earlier formed channels in the materials. Additionally, we show photopatterning of peptide cues in 3D using either a photomask or direct laser writing. We demonstrate that these squaramide-based filamentous materials can be applied to the development of synthetic and biomimetic 3D in vitro cell and disease models, where their secondary cross-linking enables mechanical heterogeneity and shaping at multiple length scales.



https://doi.org/10.1021/acsami.1c24114