Zeitschriftenaufsätze ab 2018

Anzahl der Treffer: 1679
Erstellt: Mon, 01 Jul 2024 23:16:20 +0200 in 0.6269 sec


Morozov, Mikhail; Ivanov, Svetlozar; Kadirov, Marsil; Bund, Andreas
Facile synthesis of a binder-free 3D Ni/NiO microwire network with a nanostructured fiber surface for a negative electrode in Li-ion battery. - In: Journal of applied electrochemistry, ISSN 1572-8838, Bd. 51 (2021), 5, S. 815-828

Binder-free Ni/NiO microwire hybrid network with a nanostructured surface is synthesized by employing a facile and low-cost method, involving one-pot synthesis of Ni microwires, followed by their partial oxidation in air atmosphere. A combination of imaging, diffraction, thermodynamic and electrochemical methods has been applied to reveal the impact of the synthesis conditions on the energy storage performance of the Ni/NiO microwire networks. The thermal conditions for the synthesis have been optimized by means of thermogravimetric (TGA/DSC) analysis, where an appropriate temperature (T = 400 ˚C) for obtaining a low-defect NiO phase has been determined. The performed electrochemical characterisation of the materials has shown that setting a low temperature for the synthesis enables high reversible capacity and better cycling stability of the binder-free materials. When the Ni/NiO network structures are deposited by a conventional slurry-based technology, involving polymer binder and conductive additive, the high capacity and cycling stability of the anodes are preserved, independent of the temperature conditions of synthesis. Electrochemical impedance spectroscopy is applied to support the interpretation of our results.



https://doi.org/10.1007/s10800-021-01541-5
Schmidt, Udo; Peipmann, Ralf; Bund, Andreas
Zweidimensionale Simulation von Hull-Zellen. - In: Galvanotechnik, ISSN 0016-4232, Bd. 112 (2021), 3, S. 301-311

Link, Steffen; Kurniawan, Mario; Dimitrova, Anna; Krischok, Stefan; Bund, Andreas; Ivanov, Svetlozar
Enhanced cycling performance of binder free silicon-based anode by application of electrochemically formed microporous substrate. - In: Electrochimica acta, ISSN 1873-3859, Bd. 380 (2021), 138216, S. 1-9

In this work, an electrochemically formed porous Cu current collector (p-Cu) is utilized for the development of a high-performance binder-free silicon anode. Two electrolyte compositions based on sulfolane (SL) and [BMP][TFSI] ionic liquid (IL) are implemented for silicon deposition. The electrochemical experiments confirm the advantages of applying the p-Cu structure in terms of specific capacity, rate capability, and long-term cycling, where the best electrochemical properties have been observed for the Si deposited from SL electrolyte. The Si-based p-Cu anodes formed in SL display stable 2500 mAh g^-1 reversible capacity during the first 250 cycles and promising capacity retention. Compared to this result, the cycling performance of the same type of material deposited on flat Cu foil (f-Cu) showed significantly reduced capacity (1400 mAh g^-1) and inferior cycling performance. The positive effect can be attributed to the improved mechanical stability of the active material and accelerated ionic transport in the porous structure of the anode. The improved functional properties of the electrochemically deposited Si from SL electrolyte in p-Cu samples compared to those obtained in IL can be ascribed to differences in the chemical composition. While the layers deposited in SL electrolyte involve Si domains incorporated in a matrix containing C and O that offer high mechanical stability, the Si material obtained in IL is additionally influenced by N and F chemical species, resulting from active IL decomposition. These differences in the chemical surrounding of the Si domains are the primary reason for the inferior electrochemical performance of the material deposited from [BMP][TFSI] electrolyte. XPS analysis shows that the initial composition of the as deposited layers, containing a considerable amount of elemental Si, is changed after lithiation and that the electrochemical activity of the anode is governed by switching between the intermediate redox states of Si, where the carbon-oxygen matrix is also involved.



https://doi.org/10.1016/j.electacta.2021.138216
Kurniawan, Mario; Stich, Michael; Marimon, Mayra; Camargo, Magali K.; Peipmann, Ralf; Hannappel, Thomas; Bund, Andreas
Electrodeposition of cuprous oxide on a porous copper framework for an improved photoelectrochemical performance. - In: Journal of materials science, ISSN 1573-4803, Bd. 56 (2021), 20, S. 11866-11880

https://doi.org/10.1007/s10853-021-06058-y
Herrfurth, Oliver; Richter, Steffen; Rebarz, Mateusz; Espinoza, Shirley; Zúñiga-Pérez, Jesus; Deparis, Christiane; Leveillee, Joshua; Schleife, André; Grundmann, Marius; Andreasson, Jakob; Schmidt-Grund, Rüdiger
Transient birefringence and dichroism in ZnO studied with fs-time-resolved spectroscopic ellipsometry. - In: Physical review research, ISSN 2643-1564, Bd. 3 (2021), 1, S. 013246-1-013246-12

The full transient dielectric-function (DF) tensor of ZnO after UV-laser excitation in the spectral range 1.4-3.6 eV is obtained by measuring an m-plane-oriented ZnO thin film with femtosecond (fs)-time-resolved spectroscopic ellipsometry. From the merits of the method, we can distinguish between changes in the real and the imaginary part of the DF as well as changes in birefringence and dichroism, respectively. We find pump-induced switching from positive to negative birefringence in almost the entire measured spectral range for about 1 ps. Simultaneously, weak dichroism in the spectral range below 3.0 eV hints at contributions of inter-valence-band transitions. Line-shape analysis of the DF above the band gap based on discrete exciton, exciton-continuum, and exciton-phonon-complex contributions shows a maximal dynamic increase in the transient exciton energy by 80 meV. The absorption coefficient below the band gap reveals an exponential line shape attributed to Urbach-rule absorption mediated by exciton-longitudinal-optic-phonon interaction. The transient DF is supported by first-principles calculations for 1020cm^-3 excited electron-hole pairs in ideal bulk ZnO.



https://doi.org/10.1103/PhysRevResearch.3.013246
Bosch, Martí; Behrens, Arne; Sinzinger, Stefan; Hentschel, Martina
Husimi functions for coupled optical resonators. - In: Journal of the Optical Society of America, ISSN 1520-8532, Bd. 38 (2021), 4, S. 573-578

Phase-space analysis has been widely used in the past for the study of optical resonant systems. While it is usually employed to analyze the far-field behavior of resonant systems, we focus here on its applicability to coupling problems. By looking at the phase-space description of both the resonant mode and the exciting source, it is possible to understand the coupling mechanisms as well as to gain insights and approximate the coupling behavior with reduced computational effort. In this work, we develop the framework for this idea and apply it to a system of an asymmetric dielectric resonator coupled to a waveguide.



https://doi.org/10.1364/JOSAA.422740
Wells, James; Ortega, Daniel; Steinhoff, Uwe; Dutz, Silvio; Garaio, E.; Sandre, Olivier; Natividad, Eva; Cruz, M. M.; Brero, Francesca; Southern, Paul; Pankhurst, Quentin A.; Spassov, Simo;
Challenges and recommendations for magnetic hyperthermia characterization measurements. - In: International journal of hyperthermia and thermal therapies, ISSN 1464-5157, Bd. 38 (2021), 1, S. 447-460

Purpose The localized heating of magnetic nanoparticles (MNPs) via the application of time-varying magnetic fields - a process known as magnetic field hyperthermia (MFH) - can greatly enhance existing options for cancer treatment; but for broad clinical uptake its optimization, reproducibility and safety must be comprehensively proven. As part of this effort, the quantification of MNP heating - characterized by the specific loss power (SLP), measured in W/g, or by the intrinsic loss power (ILP), in Hm2/kg - is frequently reported. However, in SLP/ILP measurements to date, the apparatus, the analysis techniques and the field conditions used by different researchers have varied greatly, leading to questions as to the reproducibility of the measurements.Materials and Methods An interlaboratory study (across N = 21 European sites) of calorimetry measurements that constitutes a snapshot of the current state-of-the-art within the MFH community has been undertaken. Identical samples of two stable nanoparticle systems were distributed to all participating laboratories. Raw measurement data as well as the results of in-house analysis techniques were collected along with details of the measurement apparatus used. Raw measurement data was further reanalyzed by universal application of the corrected-slope method to examine relative influences of apparatus and results processing.Results The data show that although there is very good intralaboratory repeatability, the overall interlaboratory measurement accuracy is poor, with the consolidated ILP data having standard deviations on the mean of ca. ± 30% to ± 40%. There is a strong systematic component to the uncertainties, and a clear rank correlation between the measuring laboratory and the ILP. Both of these are indications of a current lack of normalization in this field. A number of possible sources of systematic uncertainties are identified, and means determined to alleviate or minimize them. However, no single dominant factor was identified, and significant work remains to ascertain and remove the remaining uncertainty sources.Conclusion We conclude that the study reveals a current lack of harmonization in MFH characterization of MNPs, and highlights the growing need for standardized, quantitative characterization techniques for this emerging medical technology.



https://doi.org/10.1080/02656736.2021.1892837
Schmidt, Helmut; Hahn, Gerald; Deco, Gustavo; Knösche, Thomas R.
Ephaptic coupling in white matter fibre bundles modulates axonal transmission delays. - In: PLoS Computational Biology, ISSN 1553-7358, Bd. 17 (2021), 2, e1007858, S. 1-24

Axonal connections are widely regarded as faithful transmitters of neuronal signals with fixed delays. The reasoning behind this is that extracellular potentials caused by spikes travelling along axons are too small to have an effect on other axons. Here we devise a computational framework that allows us to study the effect of extracellular potentials generated by spike volleys in axonal fibre bundles on axonal transmission delays. We demonstrate that, although the extracellular potentials generated by single spikes are of the order of microvolts, the collective extracellular potential generated by spike volleys can reach several millivolts. As a consequence, the resulting depolarisation of the axonal membranes increases the velocity of spikes, and therefore reduces axonal delays between brain areas. Driving a neural mass model with such spike volleys, we further demonstrate that only ephaptic coupling can explain the reduction of stimulus latencies with increased stimulus intensities, as observed in many psychological experiments.



https://doi.org/10.1371/journal.pcbi.1007858
Oliva Ramírez, Manuel; Wang, Dong; Flock, Dominik; Rico, Víctor; González-Elipe, Agustín R.; Schaaf, Peter
Solid-state dewetting of gold on stochastically periodic SiO2 nanocolumns prepared by oblique angle deposition. - In: ACS applied materials & interfaces, ISSN 1944-8252, Bd. 13 (2021), 9, S. 11385-11395
Im Titel ist "2" tiefgestellt

https://doi.org/10.1021/acsami.0c19327
Dutz, Silvio; Zborowski, Maciej; Häfeli, Urs; Schütt, Wolfgang
Preface to the Special Issue "Scientific and Clinical Applications of Magnetic Carriers". - In: Journal of magnetism and magnetic materials, ISSN 1873-4766, Bd. 525 (2021), 167667

https://doi.org/10.1016/j.jmmm.2020.167667