Zeitschriftenaufsätze ab 2018

Anzahl der Treffer: 1679
Erstellt: Mon, 01 Jul 2024 23:16:20 +0200 in 0.0787 sec


Hotovy, Ivan; Spieß, Lothar; Mikolasek, Miroslav; Kostic, Ivan; Sojkova, Michaela; Romanus, Henry; Hulman, Martin; Buc, Dalibor; Rehacek, Vlastimil
Layered WS2 thin films prepared by sulfurization of sputtered W films. - In: Applied surface science, Bd. 544 (2021), 148719
Im Titel ist "2" tiefgestellt

We present structural, optical and electrical investigations of layered WS2 films prepared on tungsten. A two-step technique has been used to synthesize layered WS2 films using sulfurization of W films sputtered with thinner (1 and 2 nm) and thicker (14 and 28 nm) thicknesses at 800 ˚C. XRD analysis revealed that the examined films are polycrystalline with texture and have a 2H-WS2 hexagonal microstructure. Using Raman spectroscopy with the 532 nm laser excitation, the presence of E12g and A1g vibration modes was observed and the layered nature of WS2 was confirmed. FE SEM observations showed two different surface morphologies. The samples grown on thinner W films were not compact over the surface and agglomeration of nanosize grains in combination of triangles and flakes was visible. In another group the surface was lamellar and contained plenty of nanorods embedded vertically and/or inclined at different angles to the surface. Layered WS2 films exhibited a direct band gap in the range of 2.1-2.5 eV and they were n-type semiconductors with the sheet resistance in the order of several MΩ at room temperature.



https://doi.org/10.1016/j.apsusc.2020.148719
Keck, Lorenz; Shaw, Gordon; Theska, René; Schlamminger, Stephan
Design of an electrostatic balance mechanism to measure optical power of 100 kW. - In: IEEE transactions on instrumentation and measurement, ISSN 0018-9456, Bd. 70 (2021), 7002909, insges. 9 S.

https://doi.org/10.1109/TIM.2021.3060575
Mulyadi, Indra Hardian; Fiedler, Patrique; Eichardt, Roland; Haueisen, Jens; Supriyanto, Eko
Pareto optimization for electrodes placement: compromises between electrophysiological and practical aspects. - In: Medical & biological engineering & computing, ISSN 1741-0444, Bd. 59 (2021), 2, S. 431-447

Wearable electronics and sensors are increasingly popular for personal health monitoring, including smart shirts containing electrocardiography (ECG) electrodes. Optimal electrode performance requires careful selection of the electrode position. On top of the electrophysiological aspects, practical aspects must be considered due to the dynamic recording environment. We propose a new method to obtain optimal electrode placement by considering multiple dimensions. The electrophysiological aspects were represented by P-, R-, and T-peak of ECG waveform, while the shirt-skin gap, shirt movement, and regional sweat rate represented the practical aspects. This study employed a secondary data set and simulations for the electrophysiological and practical aspects, respectively. Typically, there is no ideal solution that maximizes satisfaction degrees of multiple electrophysiological and practical aspects simultaneously; a compromise is the most appropriate approach. Instead of combining both aspects - which are independent of each other - into a single-objective optimization, we used multi-objective optimization to obtain a Pareto set, which contains predominant solutions. These solutions may facilitate the decision-makers to decide the preferred electrode locations based on application-specific criteria. Our proposed approach may aid manufacturers in making decisions regarding the placement of electrodes within smart shirts.



https://doi.org/10.1007/s11517-021-02319-9
Min, Chaoqing; Dahlmann, Martin; Sattel, Thomas
Steady state response analysis for a switched stiffness vibration control system based on vibration energy conversion. - In: Nonlinear dynamics, ISSN 1573-269X, Bd. 103 (2021), 1, S. 239-254

A novel semi-active vibration control concept with a serial-switch-stiffness-system was previously presented in our work. Differing from conventional vibration control systems, this system does not dissipate but converts vibration energy as potential energy stored in springs and then reacts against external disturbance. As a piecewise linear system, whether or not energy conversion limit happens is an interesting nonlinear dynamic issue related to the systems steady state response. This paper formulates this issue in depth using the approach called equivalence in control. The systems control force represented by the converted vibration energy is approximately decomposed into two portions. One is responsible for low-frequency free response and the other for high-frequency switching response. An equivalent linear system suffering from a decomposed high-frequency switching force is obtained instead of the original switched system. The steady state response of the disturbed system can be delivered through linear superposition as executed in a linear system. Energy conversion limit occurring in the system under a harmonic disturbance is numerically shown by means of fast Fourier transformation. Analytical formulation and numerical simulation for open- and closed-loop control of the system are further carried out, respectively. The results give that the proposed approach is capable of solving the stead state response of the switched system accurately, and meanwhile, energy conversion limit occurs in the vibration control system indeed. Experimental discussion is also executed.



https://doi.org/10.1007/s11071-020-06147-8
Chen, Zhiwen; Liu, Chang; Ding, Steven X.; Peng, Tao; Yang, Chunhua; Gui, Weihua; Shardt, Yuri A. W.
A just-in-time-learning-aided canonical correlation analysis method for multimode process monitoring and fault detection. - In: IEEE transactions on industrial electronics, Bd. 68 (2021), 6, S. 5259-5270

In this article, a just-in-time-learning (JITL)-aided canonical correlation analysis (CCA) is proposed for the monitoring and fault detection of multimode processes. A canonical correlation analysis (CCA)-based fault detection method has been applied to single-operating-mode processes. However, CCA has limitations in handling processes with multiple operating points. These limitations are illustrated by a numerical example. To reduce the time for searching relevant data, K-means is integrated into the JITL to build the local CCA model. Furthermore, the proposed method is compared with commonly used kernel-based methods in terms of computational complexity and interpretability of the results. Finally, the validity and efficacy of the proposed method are shown using an industrial benchmark process. Results show that the proposed method has better performance than conventional methods in terms of fault detection rate while still tracking changes in the system.



https://doi.org/10.1109/TIE.2020.2989708
Huo, Dexian; Chen, Bin; Li, Mingtao; Meng, Guowen; Lei, Yong; Zhu, Chuhong
Template-assisted fabrication of Ag-nanoparticlesZnO-nanorods array as recyclable 3D surface enhanced Raman scattering substrate for rapid detection of trace pesticides. - In: Nanotechnology, ISSN 1361-6528, Bd. 32 (2021), 14, 145302, S. 1-9

We present a template-assisted fabrication method for a large-scale ordered arrays of ZnO nanorods (ZnO-NRs) modified with Ag nanoparticles (Ag-NPs), which possess high-density three-dimensional (3D) hot spots uniformly dispersed all over the substrate, being beneficial to ultrahigh sensitivity of surface enhanced Raman scattering (SERS) detection. These achieved Ag-NPsZnO-NRs arrays show high sensitivity, good spectral uniformity and reproducibility as substrates for SERS detection. Using the arrays, both dye molecules (rhodamine 6G, R6G) and organic pollutants like toxic pesticides (thiram and methyl parathion) are detected, with the detection limits of thiram and methyl parathion being 0.79 x 10^-9 M and 1.51 x 10^-8 M, respectively. In addition, the Ag-NPs@ZnO-NRs arrays have a self-cleaning function because the analyte molecules can be photocatalytic degraded using ultraviolet irradiation, showing that the 3D recyclable arrays have promising opportunities to be applied in rapid SERS-based detection of toxic organic pesticides.



https://doi.org/10.1088/1361-6528/abc50e
Meier, Lukas; Braun, Christian; Hannappel, Thomas; Schmidt, W. Gero
Band alignment at GaxIn1-xP/AlyIn1-yP alloy interfaces from hybrid density functional theory calculations. - In: Physica status solidi, ISSN 1521-3951, Bd. 258 (2021), 2, 2000463, insges. 4 S.

The composition dependence of the natural band alignment at the GaxIn1-xP/AlyIn1-yP alloy interface is investigated via hybrid functional based density functional theory. The direct-indirect crossover for the GaxIn1-xP and AlyIn1-yP alloys is calculated to occur for x = 0.9 and y = 0.43. The calculated GaxIn1-xP/AlyIn1-yP interface band alignment shows a crossover from type-I to type-II with increasing Ga content x. The valence band offset is essentially positive irrespective of the alloy compositions, and amounts up to 0.56 eV. The conduction band offset varies between −0.85 and 1.16 eV.



https://doi.org/10.1002/pssb.202000463
Yan, Yong; Liu, Chunyue; Jian, Hanwen; Cheng, Xing; Hu, Ting; Wang, Dong; Shang, Lu; Chen, Ge; Schaaf, Peter; Wang, Xiayan; Kan, Erjun; Zhang, Tierui
Substitutionally dispersed high-oxidation CoOx clusters in the lattice of rutile TiO2 triggering efficient Co-Ti cooperative catalytic centers for oxygen evolution reactions. - In: Advanced functional materials, ISSN 1616-3028, Bd. 31 (2021), 9, 2009610, insges. 13 S.
Im Titel sind "x" und "2" tiefgestellt

The development of economical, highly active, and robust electrocatalysts for oxygen evolution reaction (OER) is one of the major obstacles for producing affordable water splitting systems and metal-air batteries. Herein, it is reported that the subnanometric CoOx clusters with high oxidation state substitutionally dispersed in the lattice of rutile TiO2 support (Co-TiO2) can be prepared by a thermally induced phase segregation process. Owing to the strong interaction of CoOx clusters and TiO2 support, Co-TiO2 exhibits both excellent intrinsic activity and durability for OER. The turnover frequency of Co-TiO2 is up to 3.250 s-1 at overpotentials of 350 mV; this value is one of the highest in terms of OER performance among the current Co-based active materials under similar testing conditions; moreover, the OER current density loss is only 6.5% at a constant overpotential of 400 mV for 30 000 s, which is superior to the benchmark Co3O4 and RuO2 catalysts. Mechanism analysis demonstrates that charge transfer occurs between Co sites and their neighboring Ti atoms, triggering the efficient Co-Ti cooperative catalytic centers, in which OH* and O* are preferred to be adsorbed on the bridging sites of Co and Ti with favorable adsorption energy, inducing a lower energy barrier for O2 generation.



https://doi.org/10.1002/adfm.202009610
Visaveliya, Nikunjkumar R.; Köhler, Michael
Hierarchical assemblies of polymer particles through tailored interfaces and controllable interfacial interactions. - In: Advanced functional materials, ISSN 1616-3028, Bd. 31 (2021), 9, 2007407, insges. 22 S.

Hierarchical assembly architectures of functional polymer particles are promising because of their physicochemical and surface properties for multi-labeling and sensing to catalysis and biomedical applications. While polymer nanoparticles' interior is mainly made up of the cross-linked network, their surface can be tailored with soft, flexible, and responsive molecules and macromolecules as potential support for the controlled particulate assemblies. Molecular surfactants and polyelectrolytes as interfacial agents improve the stability of the nanoparticles whereas swellable and soft shell-like cross-linked polymeric layer at the interface can significantly enhance the uptake of guest nano-constituents during assemblies. Besides, layer-by-layer surface-functionalization holds the ability to provide a high variability in assembly architectures of different interfacial properties. Considering these aspects, various assembly architectures of polymer nanoparticles of tunable size, shapes, morphology, and tailored interfaces together with controllable interfacial interactions are constructed here. The microfluidic-mediated platform has been used for the synthesis of constituents polymer nanoparticles of various structural and interfacial properties, and their assemblies are conducted in batch or flow conditions. The assemblies presented in this progress report is divided into three main categories: cross-linked polymeric network's fusion-based self-assembly, electrostatic-driven assemblies, and assembly formed by encapsulating smaller nanoparticles into larger microparticles.



https://doi.org/10.1002/adfm.202007407
Käufer, Theo; König, Jörg; Cierpka, Christian
Stereoscopic PIV measurements using low-cost action cameras. - In: Experiments in fluids, ISSN 1432-1114, Bd. 62 (2021), 3, 57, S. 1-16

Recently, large progress was made in the development towards low-cost PIV (Particle Image Velocimetry) for industrial and educational applications. This paper presents the use of two low-cost action cameras for stereoscopic planar PIV. A continuous wave laser or alternatively an LED was used for illumination and pulsed by a frequency generator. A slight detuning of the light pulsation and camera frame rate minimizes systematic errors by the rolling shutter effect and allows for the synchronization of both cameras by postprocessing without the need of hardware synchronization. The setup was successfully qualified on a rotating particle pattern in a planar and stereoscopic configuration as well as on the jet of an aquarium pump. Since action cameras are intended to be used at outdoor activities, they are small, very robust and work autarkic. In conjunction with the synchronization and image pre-processing scheme presented herein, those cameras enable stereoscopic PIV in harsh environments and even on moving experiments.



https://doi.org/10.1007/s00348-020-03110-6