Zeitschriftenaufsätze und Buchbeiträge

Anzahl der Treffer: 1457
Erstellt: Wed, 17 Jul 2024 23:03:01 +0200 in 0.1184 sec


Cheng, Pengfei; Ziegler, Mario; Ripka, Valentin; Wang, Honglei; Pollok, Kilian; Langenhorst, Falko; Wang, Dong; Schaaf, Peter
Black silver: three-dimensional Ag hybrid plasmonic nanostructures with strong photon coupling for scalable photothermoelectric power generation. - In: ACS applied materials & interfaces, ISSN 1944-8252, Bd. 14 (2022), 14, S. 16894-16900

The conversion of solar energy into electric power has been extensively studied, for example, by photovoltaics. However, photo-thermoelectric (P-TE) conversion as an effective solar-to-electricity conversion process is less studied. Here, we present an efficient full-solar-spectrum plasmonic absorber for scalable P-TE conversion based on a simple integration of light absorber and commercial thermoelectric modules. Our developed light absorber of silica-silver hybrid structures achieves an average absorption of 99.4% in the wavelength range from 200 to 2500 nm, which covers over 98% solar energy in this range. It thus appears fully matte black and is named black silver. The light absorber includes a hierarchical structure with Ag nanoparticles attached on three-dimensional SiO2 nanostructures, resulting in ultrahigh absorption. Strong localized surface plasmon resonance hybridization together with multiple scattering causes the perfect light absorption. Using the black silver as a light absorber for P-TE power generation, it can achieve a peak voltage density as high as 82.5 V m-2 under a solar intensity of 100 mW cm-2, which is large enough to power numerous electronic devices. By assembling 20 thermoelectric modules in series, we test their possibility of practical application, and they can also achieve an average voltage density of 70.66 V m-2. Our work opens up a promising technology that facilitates high-efficiency and scalable solar energy conversion via the P-TE effect.



https://doi.org/10.1021/acsami.2c01181
Schneckenburger, Max; Almeida, Rui; Höfler, Sven; Börret, Rainer
Material removal by slurry erosion in the robot polishing of optics by polishing slurry nozzles. - In: Wear, ISSN 0043-1648, Bd. 494/495 (2022), 204257

Robot polishing is increasingly being used in the production of high-end glass work pieces such as astronomy mirrors, lithography mirrors, laser gyroscopes or high-precision coordinate measuring machines. The quality of optical components such as lenses or mirrors can be described by shape errors and surface roughness. Whilst the trend towards sub nanometre level surfaces finishes and features progresses, matching both form and finish coherently in complex parts remains a major challenge. With increasing optic sizes, the stability of the polishing process becomes more and more important. Polishing agent nozzles supply the polishing process with sufficient polishing agent and it is assumed that this slurry erosion has an influence on the material removal. To investigate this, a static test set-up was built. The primary aim of this paper is to point out and raise awareness of the problem of slurry erosion in glass polishing and the influence of slurry erosion by conventional polishing nozzles is shown. From an angle of 30˚, the nozzle turns into a fluid jet tool and removes material independently.



https://doi.org/10.1016/j.wear.2022.204257
Böttcher, René; Ispas, Adriana; Bund, Andreas
Anodic dissolution of aluminum and anodic passivation in [EMIm]Cl-based ionic liquids :
Anodische Auflösung und Passivierung von Aluminium in ionischen Flüssigkeiten auf Basis von [EMIm]Cl. - In: WOMag, ISSN 2195-5891, Bd. 11 (2022), 1/2, S. 27-29

Böttcher, René; Mai, Sebastian; Ispas, Adriana; Bund, Andreas
Aluminiumabscheidung und -auflösung in ionischen Flüssigkeiten auf Basis von [EMIm]Cl : Kinetik des Ladungstransfers und der geschwindigkeitsbestimmende Schritt. - In: WOMag, ISSN 2195-5891, Bd. 11 (2022), 3, S. 22-25

Patschger, Andreas; Husung, Stephan; Puch, Florian; Röhnert, Felix
Wichtiger Wettbewerbsfaktor Thüringer Unternehmen. - In: Wirtschaftsspiegel, ISSN 2190-409X, Bd. 18 (2022), 1, S. 24-25

Salimitari, Parastoo; Behroudj, Arezo; Strehle, Steffen
Aligned deposition of bottom-up grown nanowires by two-directional pressure-controlled contact printing. - In: Nanotechnology, ISSN 1361-6528, Bd. 33 (2022), 23, 235301, S. 1-9

Aligned large-scale deposition of nanowires grown in a bottom-up manner with high yield is a persisting challenge but required to assemble single-nanowire devices effectively. Contact printing is a powerful strategy in this regard but requires so far adequate adjustment of the tribological surface interactions between nanowires and target substrate, e.g. by microtechnological surface patterning, chemical modifications or lift-off strategies. To expand the technological possibilities, we explored two-directional pressure-controlled contact printing as an alternative approach to efficiently transfer nanowires with controlled density and alignment angle onto target substrates through vertical-force control. To better understand this technology and the mechanical behavior of nanowires during the contact printing process, the dynamic bending behavior of nanowires under varying printing conditions is modeled by using the finite element method. We show that the density and angular orientation of transferred nanowires can be controlled using this three-axis printing approach, which thus enables potentially a controlled nanowire device fabrication on a large scale.



https://doi.org/10.1088/1361-6528/ac56f8
Büker, Lisa; Böttcher, René; Leimbach, Martin; Hahne, Tobias; Dickbreder, Reiner; Bund, Andreas
Influence of carboxylic acids on the performance of trivalent chromium electrolytes for the deposition of functional coatings. - In: Electrochimica acta, ISSN 1873-3859, Bd. 411 (2022), 140054

As a direct consequence of the restrictions on the use of hexavalent chromium compounds, the demand for a suitable replacement has arisen. In this work the electrodeposition of thick chromium layers (>1µm) from a trivalent electrolyte is investigated with the aim to identify an electrolyte composition for the deposition of hard functional coatings. These layers can be used to surface finish tribological components experiencing high wear rates or mechanical stress in applications such as coating printing cylinders, feed rollers or piston rods. The influence of different carboxylic acids (malonic acid, malic acid, glycolic acid) on the deposition has been studied. The effect of current density on the current efficiency was investigated using in-situ microgravimetry. For a technical application the electrolyte containing malonic acid was the most promising one and was further investigated regarding the properties of the deposits, such as surface morphology, crack formation, composition, thickness and hardness, aiming at properties as close as possible to those of hexavalent chromium. In comparison to hexavalent chromium, the layer of trivalent chromium showed the same properties in terms of crack formation, hardness and layer thickness (> 1 µm).



https://doi.org/10.1016/j.electacta.2022.140054
Schötz, Theresa; Gordon, Leo W.; Ivanov, Svetlozar; Bund, Andreas; Mandler, Daniel; Messinger, Robert J.
Disentangling faradaic, pseudocapacitive, and capacitive charge storage: a tutorial for the characterization of batteries, supercapacitors, and hybrid systems. - In: Electrochimica acta, ISSN 1873-3859, Bd. 412 (2022), 140072

Today's electrochemical energy storage technologies aim to combine high specific energy and power, as well as long cycle life, into one system to meet increasing demands in performance. These properties, however, are often characteristic of either batteries (high specific energy) or capacitors (high specific power and cyclability). To merge battery- and capacitor-like properties in a hybrid energy storage system, researchers must understand and control the co-existence of multiple charge storage mechanisms. Charge storage mechanisms can be classified as faradaic, capacitive, or pseudocapacitive, where their relative contributions determine the operating principles and electrochemical performance of the system. Hybrid electrochemical energy storage systems can be better understood and analyzed if the primary charge storage mechanism is identified correctly. This tutorial review first defines faradaic and capacitive charge storage mechanisms and then clarifies the definition of pseudocapacitance using a physically intuitive framework. Then, we discuss strategies that enable these charge storage mechanisms to be quantitatively disentangled using common electrochemical techniques. Finally, we outline representative hybrid energy storage systems that combine the electrochemical characteristics of batteries, capacitors and pseudocapacitors. Modern examples are analyzed while step-by-step guides are provided for all mentioned experimental methods in the Supplementary Information.



https://doi.org/10.1016/j.electacta.2022.140072
Muñoz-Piña, Sandra; Alcaide, A. M.; Limones-Ahijón, Blanca; Oliva Ramírez, Manuel; Rico, Victor; Alcalá, German; González, Maria U.; García-Martín, Jose M.; Alvarez, Rafael; Wang, Dong; Schaaf, Peter; González-Elipe, Agustin R.; Palmero, Alberto
Thin film nanostructuring at oblique angles by substrate patterning. - In: Surface and coatings technology, ISSN 1879-3347, Bd. 436 (2022), 128293, insges. 12 S.

It is demonstrated that, besides classical nanocolumnar arrays, the oblique angle geometry induces the growth of singular structures in the nanoscale when using wisely designed patterned substrates. Well-ordered array of crosses, cylindrical nanorods or hole structures arranged in square or hexagonal regular geometries are reported as examples, among others. The fundamental framework connecting substrate topography and film growth at oblique angles is presented, allowing the use of substrate patterning as a feasible thin film nanostructuring technique. A systematic analysis of the growth of TiO2 thin films on 4 different lithographic patterned substrates in 4 different scale lengths is also presented. A first conclusion is the existence of a height-based selective growth in the initial stages of the deposition, by which the film preferentially develops on top of the tallest substrate features. This behavior is maintained until the film reaches a critical thickness, the so-called Oblivion Thickness, above which the film topography becomes gradually independent of the substrate features. A general formula relating the spatial features of the pattern, the coarsening exponent and the Oblivion Thickness has been deduced.



https://doi.org/10.1016/j.surfcoat.2022.128293
Smyrnova, Kateryna; Sahul, Martin; Haršáni, Marián; Pogrebnjak, Aleksandr Dmitrievič; Ivashchenko, Volodymyr; Beresnev, Vyacheslav; Stolbovoy, Vyacheslav; Čaplovič, &hacek;Lubomír; Čaplovičová, Mária; Vančo, &hacek;Lubomír; Kusý, Martin; Kassymbaev, Alexey; Satrapinskyy, Leonid; Flock, Dominik
Microstructure, mechanical and tribological properties of advanced layered WN/MeN (Me = Zr, Cr, Mo, Nb) nanocomposite coatings. - In: Nanomaterials, ISSN 2079-4991, Bd. 12 (2022), 3, 395, S. 1-23

Due to the increased demands for drilling and cutting tools working at extreme machining conditions, protective coatings are extensively utilized to prolong the tool life and eliminate the need for lubricants. The present work reports on the effect of a second MeN (Me = Zr, Cr, Mo, Nb) layer in WN-based nanocomposite multilayers on microstructure, phase composition, and mechanical and tribological properties. The WN/MoN multilayers have not been studied yet, and cathodic-arc physical vapor deposition (CA-PVD) has been used to fabricate studied coating systems for the first time. Moreover, first-principles calculations were performed to gain more insight into the properties of deposited multilayers. Two types of coating microstructure with different kinds of lattices were observed: (i) face-centered cubic (fcc) on fcc-W2N (WN/CrN and WN/ZrN) and (ii) a combination of hexagonal and fcc on fcc-W2N (WN/MoN and WN/NbN). Among the four studied systems, the WN/NbN had superior properties: the lowest specific wear rate (1.7 × 10^-6 mm^3/Nm) and high hardness (36 GPa) and plasticity index H/E (0.93). Low surface roughness, high elastic strain to failure, Nb2O5 and WO3 tribofilms forming during sliding, ductile behavior of NbN, and nanocomposite structure contributed to high tribological performance. The results indicated the suitability of WN/NbN as a protective coating operating in challenging conditions.



https://doi.org/10.3390/nano12030395