Zeitschriftenaufsätze des InIT der TU IlmenauZeitschriftenaufsätze des InIT der TU Ilmenau
Anzahl der Treffer: 599
Erstellt: Sun, 30 Jun 2024 16:57:26 +0200 in 0.0814 sec


Stolz, Ronny; Schiffler, Markus; Becken, Michael; Schneider, Michael; Chubak, Glenn
The hunt for mineral resources with quantum magnetometers. - In: Technisches Messen, ISSN 2196-7113, Bd. 91 (2024), 1, S. 41-50

Quantum sensing provides advanced technologies which significantly improve sensitivity and accuracy for sensing changes of motion, gravity, electric and magnetic field. Therein, quantum sensors for the detection of magnetic fields, so-called quantum magnetometers, are one of the most promising technological realizations. We firstly will provide a brief overview on methods in geophysical exploration benefitting from quantum magnetometers with resolution at the physical and technical limit. We will introduce recent developments on SQUID and OPM based sensors as specific implementations of a quantum magnetometer systems and application examples.



https://doi.org/10.1515/teme-2023-0116
Pikushina, Alena; Centeno, Luis Fernando; Stehr, Uwe; Jacobs, Heiko O.; Hein, Matthias
Electrical lengths and phase constants of stretchable coplanar transmission lines at GHz frequencies. - In: Flexible and printed electronics, ISSN 2058-8585, Bd. 9 (2024), 1, 015005, S. 1-12

Elastic, bendable and stretchable electronics establish a new and promising area of multi-physics engineering for a variety of applications, e.g. on wearables or in complex-shaped machine parts. While the area of metamorphic electronics has been investigated comprehensively, the behavior at radio frequencies (RFs), especially in the GHz range, is much less well studied. The mechanical deformation of the soft substrates, for instance, due to stretching, changes the geometrical dimensions and the electrical properties of RF transmission lines. This effect could be desirable in some cases, e.g. for smart devices with shape-dependent transmission or radiation characteristics, or undesirable in other cases, e.g. in feed and distribution networks due to the variable electrical lengths and thus phase variations. This contribution describes the results of a systematic study of the broadband RF properties of coplanar transmission lines on Ecoflex® substrates, based on numerical simulations and experimental data. Two types of stretchable transmission line structures were studied: Meander- and circular ring-segmented lines. Modeling and simulation were performed combining a 2D circuit simulation software with electromagnetic full-wave simulations. The experimental part of the work included the fabrication of metamorphic substrates metallized with thin copper layers and systematic measurements of the electrical lengths and phase constants of coplanar waveguides in the frequency range from 1 to 5 GHz based on vector network analysis for different stretching levels. With the given substrate technology, we succeeded in demonstrating stretchability up to a level of 21%, while the theoretical limit is expected at 57%. The meander- and circular-shaped line structures revealed markedly different sensitivities to the stretching level, which was lower for circular structures compared to the meander structures by approximately a factor of three.



https://doi.org/10.1088/2058-8585/ad1efd
Gholamhosseinian, Ashkan; Seitz, Jochen
CAI2M2: a centralized autonomous inclusive intersection management mechanism for heterogeneous connected vehicles. - In: IEEE open journal of vehicular technology, ISSN 2644-1330, Bd. 5 (2024), S. 230-243

https://doi.org/10.1109/OJVT.2024.3354393
Rakhimov, Damir; Haardt, Martin
Analytical performance assessment of 2-D Tensor ESPRIT in terms of physical parameters. - In: IEEE open journal of signal processing, ISSN 2644-1322, Bd. 5 (2024), S. 122-131

In this paper, we present an analytical performance assessment of 2-D Tensor ESPRIT in terms of physical parameters. We show that the error in the r -mode depends only on two components, irrespective of the dimensionality of the problem. We obtain analytical expressions in closed form for the mean squared error (MSE) in each dimension as a function of the signal-to-noise (SNR) ratio, the array steering matrices, the number of antennas, the number of snapshots, the selection matrices, and the signal correlation. The derived expressions allow a better understanding of the difference in performance between the tensor and the matrix versions of the ESPRIT algorithm. The simulation results confirm the coincidence between the presented analytical expression and the curves obtained via Monte Carlo trials. We analyze the behavior of each of the two error components in different scenarios.



https://doi.org/10.1109/OJSP.2023.3337729
Müller, Erik; Petkoviâc, Bojana; Ziolkowski, Marek; Weise, Konstantin; Töpfer, Hannes; Haueisen, Jens
An improved GPU-optimized fictitious surface charge method for transcranial magnetic stimulation. - In: IEEE transactions on magnetics, ISSN 1941-0069, Bd. 60 (2024), 3, 5100104, insges. 4 S.

The fictitious surface charge method (FSCM) is used for the calculation of the induced electrical field in magnetic stimulation. The method was embedded and optimized in Python. It was designed to allow for the computation of large problems. An element-wise Jacobi method was combined with vectorized matrix operations to increase the parallelization capabilities and enable GPU computing. The induced fields are compared against an analytical solution for a homogeneous sphere and a FEM solution on a realistic head model. The results for both cases show that the normalized root mean square error of less than 0.5% can be achieved with the integral-free FSCM even on low-performance computer hardware.



https://doi.org/10.1109/TMAG.2023.3334747
Sayeed, Akbar; Guven, Damla; Döbereiner, Michael; Semper, Sebastian; Gentile, Camillo; Bodi, Anuraag; Cheng, Zihang
A framework for developing and evaluating algorithms for estimating multipath propagation parameters from channel sounder measurements. - In: IEEE transactions on wireless communications, Bd. 23 (2024), 5, S. 4424-4441

A framework is proposed for developing and evaluating algorithms for extracting multipath propagation components (MPCs) from measurements collected by channel sounders at millimeter-wave frequencies. Sounders equipped with an omni-directional transmitter and a receiver with a uniform planar array (UPA) are considered. An accurate mathematical model is developed for the spatial frequency response of the sounder that incorporates the non-ideal cross-polar beampatterns for the UPA elements. Due to the limited Field-of-View (FoV) of each element, the model is extended to accommodate multi-FoV measurements in distinct azimuth directions. A beamspace representation of the spatial frequency response is leveraged to develop three progressively complex algorithms aimed at solving the single-snapshot maximum likelihood estimation problem: greedy matching pursuit (CLEAN), space-alternative generalized expectation-maximization (SAGE), and RiMAX. The first two are based on purely specular MPCs whereas RiMAX also accommodates diffuse MPCs. Two approaches for performance evaluation are proposed, one with knowledge of ground truth parameters, and one based on reconstruction mean-squared error. The three algorithms are compared through a demanding channel model with hundreds of MPCs and through real measurements. The results demonstrate that CLEAN gives quite reasonable estimates which are improved by SAGE and RiMAX. Lessons learned and directions for future research are discussed.



https://doi.org/10.1109/TWC.2023.3318532
Gherekhloo, Sepideh; Ardah, Khaled; Haardt, Martin
SALSA: a sequential alternating least squares approximation method for MIMO channel estimation. - In: IEEE transactions on vehicular technology, ISSN 1939-9359, Bd. 0 (2023), 0, S. 1-6

In this paper, we consider the channel estimation problem in sub-6 GHz uplink wideband multiple-input multiple-output (MIMO)-orthogonal frequency-division multiplexing (OFDM) communication systems, where a user equipment with a fully-digital beamforming structure is communicating with a base station having a hybrid analog-digital (HAD) beamforming structure. A novel channel estimation method called Sequential Alternating Least Squares Approximation (SALSA) is proposed by exploiting a hidden tensor structure in the uplink measurement matrix. Specifically, by showing that any MIMO channel matrix can be approximately decomposed into a summation of R factor matrices having a Kronecker structure, the uplink measurement matrix can be reshaped into a 3-way tensor admitting a Tucker decomposition. Exploiting the tensor structure, the MIMO channel matrix is estimated sequentially using an alternating least squares (ALS) method. Detailed simulation results are provided showing the effectiveness of the proposed SALSA method as compared to the classical least squares and linear minimum mean squared-error (LMMSE) methods.



https://doi.org/10.1109/TVT.2023.3347290
Hein, Matthias; Saccardi, Francesco
Automotive antenna measurements at VISTA. - In: Reviews of electromagnetics, ISSN 2709-4057, Bd. 2 (2023), S. 17-18
Enthalten in Roadmap paper: Antenna measurement challenges and opportunities, guest editors: Olav Breinbjerg and Manuel Sierra-Castañer

https://doi.org/10.53792/RoE/2023/23003
Gannot, Sharon; Tan, Zheng-Hua; Haardt, Martin; Chen, Nancy F.; Wai, Hoi-To; Tashev, Ivan; Kellermann, Walter; Dauwels, Justin
Data science education: the signal processing perspective [SP Education]. - In: IEEE signal processing magazine, ISSN 1558-0792, Bd. 40 (2023), 7, S. 89-93

In the last decade, the signal processing (SP) community has witnessed a paradigm shift from model-based to data-driven methods. Machine learning (ML) - more specifically, deep learning - methodologies are nowadays widely used in all SP fields, e.g., audio, speech, image, video, multimedia, and multimodal/multisensor processing, to name a few. Many data-driven methods also incorporate domain knowledge to improve problem modeling, especially when computational burden, training data scarceness, and memory size are important constraints.



https://doi.org/10.1109/MSP.2023.3294709
Gedschold, Jonas; Semper, Sebastian; Thomä, Reiner; Döbereiner, Michael; Del Galdo, Giovanni
Dynamic delay-dispersive UWB-radar targets: modeling and estimation. - In: IEEE transactions on antennas and propagation, ISSN 1558-2221, Bd. 71 (2023), 8, S. 6814-6829

This publication proposes a parametric data model and a gradient-based maximum likelihood estimator suitable for the description of delay-dispersive responses of multiple dynamic ultrawideband (UWB)-radar targets. The target responses are estimated jointly with the global target parameters range and velocity. The large relative bandwidth of UWB has consequences for model-based parameter estimation. On the one hand, the Doppler effect leads to a dispersive response in the Doppler spectrum and to a coupling of the target parameters that both need to be considered during modeling and estimation. On the other hand, the shape of an extended target results in a dispersive response in range, which can be resolved by the radar resolution. We consider this extended response as a parameter of interest, e.g., for the purpose of target recognition. Hence, we propose an efficient description and estimation of it by a finite impulse response (FIR) structure only imposing a restriction on the target’s dispersiveness in range. We evaluate the approach on simulations, compare it to state-of-the-art solutions, and provide a validation of the FIR model on measurements of a static scenario.



https://doi.org/10.1109/TAP.2023.3287672