Publikationen des InIT der TU IlmenauPublikationen des InIT der TU Ilmenau
Anzahl der Treffer: 3687
Erstellt: Sun, 30 Jun 2024 20:48:53 +0200 in 0.0566 sec


Feldhoff, Frank; Töpfer, Hannes
Short- and long-term state switching in the superconducting niobium neuron plasticity. - In: IEEE transactions on applied superconductivity, ISSN 1558-2515, Bd. 34 (2024), 3, 1300105, insges. 5 S.

Bio-inspired algorithms and architectures are considered superior to classical architectures for certain applications. An important aspect with regard to the function of the human memory is the sorting according to important and unimportant experiences. Certain important experiences are stored significantly longer than less important ones. One criterion to make this distinction is the frequency of occurrence of a property. In this work an RSFQ circuit is presented, which performs this weighting in the learning process of a synapse. In a simulation study, the principle of the selective learning mechanism is shown to work and a variant of permanent memory is demonstrated.



https://doi.org/10.1109/TASC.2024.3355876
Schmelz, Matthias; Mutsenik, Evgeniya; Bravin, Sofia; Sultanov, Aidar; Ziegler, Mario; Hübner, Uwe; Peiselt, Katja; Mechold, Stephan; Oelsner, Gregor; Kunert, Jürgen; Stolz, Ronny
Wafer-scale Al junction technology for superconducting quantum circuits. - In: IEEE transactions on applied superconductivity, ISSN 1558-2515, Bd. 34 (2024), 3, 1701005, insges. 5 S.

Josephson tunnel junctions represent a key element in superconducting electronics and quantum circuits. For many years, shadow evaporation by means of Dolan-type bridges has been the state-of-the-art for deep sub- micrometer sized structures. Increasing demand in the number of Josephson junctions, e.g., in qubit circuits and travelling wave parametric amplifiers, requests for a wafer-scale fabrication process with precise control of junction parameters and have led to an advanced lift-off technique called Manhattan-type junction technology in recent years. Herein, we report on the development of a 100 mm wafer-scale fabrication technology for deep sub-micrometer sized Al Josephson junctions with linear dimensions down to 180 nm. The critical current IC of the junctions ranges from about 10 to 120 nA scaling with their linear dimensions. Low temperature transport measurements as well as room-temperature characterization has been used for IC and process homogeneity determination of series arrays of up to 50 Josephson junctions. We discuss technology parameters such as yield, on-chip and on-wafer reproducibility of the junction's critical currents as well as main process limitations. Moreover, we present experimental results on the characterization of first transmon-type qubits fabricated using this technology.



https://doi.org/10.1109/TASC.2024.3350580
Mechold, Stephan; Peiselt, Katja; Schmelz, Matthias; Oelsner, Gregor; Ziegler, Mario; Hübner, Uwe; Kunert, Jürgen; Stolz, Ronny
Towards fabrication of sub-micrometer cross-type aluminum Josephson junctions. - In: IEEE transactions on applied superconductivity, ISSN 1558-2515, Bd. 34 (2024), 3, 1101205, insges. 5 S.

The performance of superconducting electronic devices such as superconducting quantum bits (qubits) and superconducting quantum interference devices (SQUIDs) strongly relies on high-quality Josephson junctions (JJ) and their integration into surrounding circuit elements. Therefore, a corresponding fabrication technology should allow for the fabrication of all required elements including the JJs, inductances, capacitances and waveguides. For a long time, shadow evaporation technique was the state of the art for the implementation of sub-µm sized JJs based on aluminum for qubits of high coherence times. Although, the use of a single lithographic step represents a major advantage of this technique. However, shadowing effects limit sample size, device complexity, and thus scalability of the circuitry. To overcome these limitations and to meet the demands of next generation scalable quantum circuits, in this work we introduce our cross-type JJ aluminum technology, where JJs are defined by the overlap of two narrow perpendicular stripes. We discuss the technological challenges, with a focus on our newly developed dry etching process for patterning of the aluminum thin film. Compared to a lift-off based process, this advanced wafer-scale fabrication technology offers a high integration density and the required design flexibility. We will present first results on cross-type aluminum JJs.



https://doi.org/10.1109/TASC.2023.3343681
Kunert, Jürgen; Schmelz, Matthias; Peiselt, Katja; Oelsner, Gregor; Reddy, Soundarya Gopala; Ortlepp, Thomas; Stolz, Ronny
Advanced FLUXONICS process CJ2 based on sub-µm-sized cross-type Nb/AlOx/Nb Josephson junctions for mixed signal circuits. - In: IEEE transactions on applied superconductivity, ISSN 1558-2515, Bd. 34 (2024), 3, 1101105, insges. 5 S.

Quantum computers represent a prominent example of technology harnessing quantum phenomena for practical applications. Implementations based on superconducting solid-state qubits play a leading role. These have facilitated the implementation of the first commercially viable quantum computers through the use of well-established and scalable fabrication technologies. As the number of qubits in these systems is continuously increasing, there is an urgent need to advance wiring and integration methods. Specifically, the demand for high-frequency control and readout lines within the millikelvin coolers introduces unwanted heat load. As a scalable alternative, superconducting digital electronics has been proposed as a promising candidate for direct interfacing with superconducting quantum circuits. We, therefore, advanced our well-established cross-type, sub-micrometer-sized Nb-based Josephson junction technology for analog circuits to allow for the implementation of digital circuits. Thus, an advanced mixed signal process CJ2 hosts both, analog and digital circuits, on a single chip, using Josephson junctions of a wide critical current range. We discuss the technology and the realization of first circuits as well as results of basic logic gate and dc-SQUID operations. This advanced technology CJ2 enables the development of digital interfaces for quantum circuits by academic and industrial partners in the framework of the European FLUXONICS foundry.



https://doi.org/10.1109/TASC.2024.3355024
Stolz, Ronny; Schiffler, Markus; Becken, Michael; Schneider, Michael; Chubak, Glenn
The hunt for mineral resources with quantum magnetometers. - In: Technisches Messen, ISSN 2196-7113, Bd. 91 (2024), 1, S. 41-50

Quantum sensing provides advanced technologies which significantly improve sensitivity and accuracy for sensing changes of motion, gravity, electric and magnetic field. Therein, quantum sensors for the detection of magnetic fields, so-called quantum magnetometers, are one of the most promising technological realizations. We firstly will provide a brief overview on methods in geophysical exploration benefitting from quantum magnetometers with resolution at the physical and technical limit. We will introduce recent developments on SQUID and OPM based sensors as specific implementations of a quantum magnetometer systems and application examples.



https://doi.org/10.1515/teme-2023-0116
Chamanahalli Ramanna, Varshitha;
Investigation of audio streaming applications using machine learning. - Ilmenau. - 87 Seiten
Technische Universität Ilmenau, Masterarbeit 2024

Diese Masterarbeit begibt sich auf die ehrgeizige Reise, eine avantgardistische Musikstreaming=Anwendung zu konzipieren, zu gestalten und zu implementieren, die die digitale Musikkonsumlandschaft revolutionieren soll. Das zentrale Thema dreht sich um die Schaffung einer ausgeklügelten und nutzerzentrierten Plattform, die nicht nur als Kanal für das Musikstreaming dient, sondern auch modernste Algorithmen des maschinellen Lernens wie K-means für die Gruppierung der Nutzer auf der Grundlage ihrer Favoritenliste und Apriori für die Empfehlung von Songs für jede Nutzergruppe integriert, um den Nutzern ein personalisiertes und bereicherndes Hörerlebnis zu bieten. Der Datensatz wurde synthetisch aus SongID und iframes der einzelnen Songs erstellt. Die treibende Kraft hinter dieser Innovation ist die Notwendigkeit, die Beschränkungen herkömmlicher Musik-Streaming-Anwendungen zu überwinden und insbesondere die Herausforderung anzunehmen, den Nutzern relevante und maßgeschneiderte Inhaltsvorschläge zu bieten. Die zentrale technologische Innovation, die in dieser Forschung zum Einsatz kommt, ist die Integration eines Content Delivery Network (CDN) mit PlanetScale und Render. In Anbetracht der globalen und dezentralisierten Natur der Internetnutzer gewährleistet das CDN eine schnelle und zuverlässige Verteilung der Inhalte und ermöglicht den Nutzern den nahtlosen Zugriff auf die Musikstreaming-Anwendung von jedem geografischen Standort aus. Diese Infrastruktur verbessert nicht nur die Zugänglichkeit, sondern trägt auch zu einer Verringerung der Latenz bei, wodurch Pufferungsverzögerungen verringert werden und ein unterbrechungsfreies und angenehmes Musikstreaming-Erlebnis garantiert wird. In dieser Arbeit wird der Schwerpunkt auf die sorgfältige Bewertung der Auswirkungen des CDN auf die Gesamtleistung der Anwendung gelegt, wobei Metriken wie Latenzzeit, Seitenladezeit und Benutzerzufriedenheit auf der Grundlage der Absprungrate untersucht werden, um die Wirksamkeit des CDN bei der Verbesserung der globalen Zugänglichkeit zu bewerten. Entscheidend für die Forschung ist die Integration von Algorithmen des maschinellen Lernens für Song-Empfehlungen. Die Modelle des maschinellen Lernens fungieren als intelligente Kuratoren, die komplexe Muster im Nutzerverhalten entschlüsseln, um präzise und relevante Musikvorschläge zu unterbreiten und so das Engagement und die Zufriedenheit der Nutzer zu steigern. Die Erkenntnisse der Studie können in künftige Entwicklungen von Musik-Streaming-Plattformen einfließen, indem sie für einen nutzerzentrierten Ansatz und den strategischen Einsatz neuer Technologien in der sich ständig weiterentwickelnden Landschaft des digitalen Unterhaltungskonsums plädieren, indem sie die Rendering-Latenz der Anwendung verringern.



Pikushina, Alena; Centeno, Luis Fernando; Stehr, Uwe; Jacobs, Heiko O.; Hein, Matthias
Electrical lengths and phase constants of stretchable coplanar transmission lines at GHz frequencies. - In: Flexible and printed electronics, ISSN 2058-8585, Bd. 9 (2024), 1, 015005, S. 1-12

Elastic, bendable and stretchable electronics establish a new and promising area of multi-physics engineering for a variety of applications, e.g. on wearables or in complex-shaped machine parts. While the area of metamorphic electronics has been investigated comprehensively, the behavior at radio frequencies (RFs), especially in the GHz range, is much less well studied. The mechanical deformation of the soft substrates, for instance, due to stretching, changes the geometrical dimensions and the electrical properties of RF transmission lines. This effect could be desirable in some cases, e.g. for smart devices with shape-dependent transmission or radiation characteristics, or undesirable in other cases, e.g. in feed and distribution networks due to the variable electrical lengths and thus phase variations. This contribution describes the results of a systematic study of the broadband RF properties of coplanar transmission lines on Ecoflex® substrates, based on numerical simulations and experimental data. Two types of stretchable transmission line structures were studied: Meander- and circular ring-segmented lines. Modeling and simulation were performed combining a 2D circuit simulation software with electromagnetic full-wave simulations. The experimental part of the work included the fabrication of metamorphic substrates metallized with thin copper layers and systematic measurements of the electrical lengths and phase constants of coplanar waveguides in the frequency range from 1 to 5 GHz based on vector network analysis for different stretching levels. With the given substrate technology, we succeeded in demonstrating stretchability up to a level of 21%, while the theoretical limit is expected at 57%. The meander- and circular-shaped line structures revealed markedly different sensitivities to the stretching level, which was lower for circular structures compared to the meander structures by approximately a factor of three.



https://doi.org/10.1088/2058-8585/ad1efd
Frotscher, Sven;
Analysis and implementation of an AGC for FPGAs based on ADC values. - Ilmenau. - 70 Seiten
Technische Universität Ilmenau, Diplomarbeit 2024

Diese Arbeit untersucht Automatic-Gain-Control-Strukturen (AGC-Strukturen) für Field Programmable Gate Arrays (FPGAs) in Software-Defined-Radio-Systemen (SDR-Systemen), mit besonderem Augenmerk auf solche, die beim Multiple Input Multiple Output (MIMO) Channel Sounding zur Anwendung kommen. In der Vergangenheit wurden verschiedenste Algorithmen erarbeitet, welche eine AGC auf einem FPGA implementieren [1]–[3]. Im Rahmen dieser Arbeit wurde ein High-Level-Framework zur Simulation dieser Algorithmen entwickelt. Die Leistungsfähigkeit der Algorithmen wurde bewertet und der Algorithmus aus [2] für die Implementierung in einer Hardwarebeschreibungssprache ausgewählt. Dieser entwickelte IP-Core wurde in ein bestehendes AGC-Design integriert und die Ergebnisse der implementierten AGC mit denen der High-Level-Simulation verglichen, um die Implementation zu verifizieren.



Ahmed, Nader;
Investigation of wear development and force measurement in the punching tool of the punching machine. - Ilmenau. - 92 Seiten
Technische Universität Ilmenau, Bachelorarbeit 2024

Diese Bachelorarbeit untersucht die transformierenden Veränderungen von Industrie 4.0 und konzentriert sich darauf, wie die Digitalisierung die Automatisierung, Prozessüberwachung und Qualitätsicherung verbessern kann. Die Integration von Sensoren und optischen Qualitätssystemen in Maschinen und Werkzeuge spielt eine entscheidende Rolle in diesem technologischen Fortschritt. Das Ziel dieser Studie ist es, ein umfassendes Setup zu implementieren, um die von Scherschneidstempeln ausgeübten Kräfte zu messen und den Verschleiß der Stempelschneiden in einer Produktionsmaschine für Sicherungsklammern für fischer-Anker zu überwachen. Hauptziele sind die Auswahl und Bereitstellung geeigneter Sensoren sowie deren nahtlose Integration in ein vorhandenes Werkzeug. Nach erfolgreicher Implementierung werden die aufgezeichneten Messdaten analysiert, um die Wirksamkeit bei der Identifizierung von Verschleißmustern der Scherschneidstempel und der Herstellung von Korrelationen mit der Lebensdauer der Werkzeuge zu bewerten. Dieser interdisziplinäre Ansatz trägt zur Diskussion über fortschrittliche Fertigungsmethoden bei und bietet Einblicke in die Verschleißdynamik zur Optimierung von Werkzeugdesign, Verbesserung von Wartungsprotokollen und Steigerung der Effizienz im Stanzprozess. Diese Analyse markiert einen bedeutenden Schritt zur Nutzung von Digitalisierung und Sensortechnologien für die Weiterentwicklung der Qualitätskontrollpraktiken in modernen Fertigungsparadigmen.



Naviliat, Joel;
In texture memory cubic B-splines for rapid beam-pattern interpolation. - Ilmenau. - 54 Seiten
Technische Universität Ilmenau, Diplomarbeit 2024

Bei Anwendungen in der Funkkanalschätzung und -modellierung benötigt man eine kontinuierliche Beschreibung der Antennencharakteristik (das so genannte Beam-pattern), das rechnerisch effizient und akkurat sein sollte. Als Alternative zu einer analytischen Beschreibung von komplexen Antennen (die schwierig zu beschaffen und auszuwerten ist) wird eine Beschreibung auf der Grundlage von Kalibrierungsmessungen der Antenne verwendet. Ein bestehender Ansatz, die Effective Aperture Distribution Function (EADF), verwendet eine rechenintensive auf der Discrete Fourier Transform (DFT) basierende Interpolation der Messdaten. Durch die Anwendung der kontinuierlichen inversen 2D DFT auf die Apertur der Antenne, kann die EADF eine perfekte Rekonstruktion der räumlich bandbegrenzten Beam-pattern Messdaten erhalten. Diese Arbeit stellt eine schnellere Interpolationsmethode vor, wobei die Genauigkeit der Interpolation nicht beeinträchtigt wird. Eine kubische B-Spline-Interpolation wird durch hardwarebeschleunigte lineare Interpolation auf der Graphics Processing Unit (GPU) implementiert. Die GPU-Implementierung ist in CUDA mit einer Python-Schnittstelle realisiert und nutzt den hochleistungsfähigen Texturspeicher. Unter gleichen Bedingungen ist die vorgeschlagene Implementierung mehr als zehnmal schneller als eine vergleichbare Implementierung der EADF. Der Mean Squared Relative Error (MSRE) im Falle der kubischen Interpolation beträgt etwa -79,3 dB, was unterhalb der inhärenten Fehler von Antennen Kalibrierungsmessung liegt. Die Genauigkeit jeglicher Interpolation ist immer noch durch die fehlerbehafteten Messdaten begrenzt, daher kann die rechnerisch einfachere kubische Interpolation ohne Beeinträchtigung der Modellgenauigkeit verwendet werden. Darüber hinaus erfordert die kubische im Vergleich zur DFT-basierten Interpolation nur eine konstante Anzahl von Messpunkten für jeden interpolierten Wert und ist somit unabhängig gegenüber Antennen mit größerer Apertur.