Publikationen des InIT der TU IlmenauPublikationen des InIT der TU Ilmenau
Anzahl der Treffer: 3687
Erstellt: Mon, 01 Jul 2024 13:09:22 +0200 in 0.1408 sec


Ribeiro, Lucas Nogueira; Mota, João César Moura; Le Ruyet, Didier; Souza de Cursi, Eduardo; Ruyet, Didier Le; Cursi, Eduardo Souza de
Noise, channel and message identification on MIMO channels with general noise. - In: Proceedings of the 5th International Symposium on Uncertainty Quantification and Stochastic Modelling, (2021), S. 285-305

Krey, Maximilian; Töpfer, Hannes
Topology optimization of magnetoelectric sensors using Euler-Bernoulli beam theory. - In: Microactuators, microsensors and micromechanisms, (2021), S. 115-124

A studied magnetic field sensor is based on resonant operation of magnetoelectric micro-electro-mechanical systems (MEMS). Subsequently to an applied magnetic field, the micro beam changes the eigenfrequency, due to the magnetostrictive effect. Euler-Bernoulli beam theory can calculate eigenfrequencies of bending vibrations of beams with high accuracy. Implementing more complex beam geometries is challenging, thus often the finite element method (FEM) is used. This paper deals with the modeling of prestressed beams with multilayered structure and discontinuities along the beam length using Euler-Bernoulli beam theory. The arising problems are addressed in detail. As an example, the model is applied to the studied magnetoelectric sensor and shows good accordance to FEM simulations. An optimization algorithm is used to find a sensor geometry that leads to high output signals utilizing the developed model as input for the minimization of a target function.



https://doi.org/10.1007/978-3-030-61652-6_10
Melo, Diana M. V.; Landau, Lukas T.N.; Ribeiro, Lucas Nogueira; Haardt, Martin
Iterative MMSE space-time zero-crossing precoding for channels with 1-bit quantization and oversampling. - In: Conference record of the Fifty-Fourth Asilomar Conference on Signals, Systems & Computers, (2020), S. 496-500

Systems with 1-bit quantization and oversampling at the receiver are promising for IoT applications due to low hardware complexity and low energy consumption. Zero-crossing precoding implies that the information is conveyed in the time instance of a zero-crossing within the symbol time interval. In this context, this study proposes an iterative spatial temporal MMSE precoding algorithm. In comparison to the joint space time MMSE precoder, the proposed method shows a significantly lower computational complexity and a comparable MSE performance.



https://doi.org/10.1109/IEEECONF51394.2020.9443574
Kuhnke, Philipp; Beaupain, Marie C.; Cheung, Vincent K. M.; Weise, Konstantin; Kiefer, Markus; Hartwigsen, Gesa
Left posterior inferior parietal cortex causally supports the retrieval of action knowledge. - In: NeuroImage, ISSN 1095-9572, Bd. 219 (2020), 117041, insges. 11 S.

Conceptual knowledge is central to human cognition. The left posterior inferior parietal lobe (pIPL) is implicated by neuroimaging studies as a multimodal hub representing conceptual knowledge related to various perceptual-motor modalities. However, the causal role of left pIPL in conceptual processing remains unclear. Here, we transiently disrupted left pIPL function with transcranial magnetic stimulation (TMS) to probe its causal relevance for the retrieval of action and sound knowledge. We compared effective TMS over left pIPL with sham TMS, while healthy participants performed three different tasks - lexical decision, action judgment, and sound judgment - on words with a high or low association to actions and sounds. We found that pIPL-TMS selectively impaired action judgments on low sound-low action words. For the first time, we directly related computational simulations of the TMS-induced electrical field to behavioral performance, which revealed that stronger stimulation of left pIPL is associated with worse performance for action but not sound judgments. These results indicate that left pIPL causally supports conceptual processing when action knowledge is task-relevant and cannot be compensated by sound knowledge. Our findings suggest that left pIPL is specialized for the retrieval of action knowledge, challenging the view of left pIPL as a multimodal conceptual hub.



https://doi.org/10.1016/j.neuroimage.2020.117041
Ribeiro, Lucas Nogueira; Schwarz, Stefan; Almeida, André L. F. de; Haardt, Martin
Low-complexity massive MIMO tensor precoding. - In: Conference record of the Fifty-Fourth Asilomar Conference on Signals, Systems & Computers, (2020), S. 348-355

We present a novel and low-complexity massive multiple-input multiple-output (MIMO) precoding strategy based on novel findings concerning the subspace separability of Rician fading channels. Considering a uniform rectangular array at the base station, we show that the subspaces spanned by the channel vectors can be factorized as a tensor product between two lower dimensional subspaces. Based on this result, we formulate tensor maximum ratio transmit and zero-forcing precoders. We show that the proposed tensor precoders exhibit lower computational complexity and require less instantaneous channel state information than their linear counterparts. Finally, we present computer simulations that demonstrate the applicability of the proposed tensor precoders in practical communication scenarios.



https://doi.org/10.1109/IEEECONF51394.2020.9443492
Zhang, Hequn; Zhang, Yue; Chen, Gaojie; Li, Wei; Jawad, Nawar; Cosmas, John; Zhang, Xun; Wang, Jintao; Müller, Robert
The performance measurement of the 60GHz mmWave module for IoRL network. - In: 2020 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), (2020), insges. 5 S.

As one of the key features in 5G network, Millimeter wave (mmWave) technology can provide the ultra-wide bandwidth to support higher data rate. However, for high frequency band, mmWave signal still suffers from the high pathloss, the multipath fading and the signal blockage issue, especially in the indoor environment. For different application scenarios, the channel conditions and quality of services (QoS) are quite different. Therefore, it is essential to investigate the impact of the mmWave channel on the system performance. This paper investigates and measures the performance of a 60GHz mmWave module that is exploited for the downlink and uplink high data rate transmission in the Internet of Radio-Light (IoRL) project. The coverage area and the throughput of the mmWave module is estimated by measuring the error vector magnitude (EVM) of received signals with different transmitter (TX) and receiver (RX) angles and at different locations in a laboratory. In this paper, the measurement environment and system setup are introduced. After that, the waveform design for the measurement is also discussed. The measurement results show that this 60GHz mmWave module can provide an acceptable performance only in some cases, which restricts its application scenarios.



https://doi.org/10.1109/BMSB49480.2020.9379731
Sayeed, Akbar; Vouras, Peter; Gentile, Camillo; Weiss, Alec; Quimby, Jeanne; Cheng, Zihang; Modad, Bassel; Zhang, Yuning; Anjinappa, Chethan; Erden, Fatih; Ozdemir, Ozgur; Müller, Robert; Dupleich, Diego; Niu, Han; Michelson, David; Hughes, Aidan
A framework for developing algorithms for estimating propagation parameters from measurements. - In: 2020 IEEE Globecom workshops (GC Wkshps), (2020), insges. 6 S.

A framework is proposed for developing and evaluating algorithms for extracting multipath propagation components (MPCs) from measurements collected by sounders at millimeter-wave (mmW) frequencies. To focus on algorithmic performance, an idealized model is proposed for the spatial frequency response of the propagation environment measured by a sounder. The input to the sounder model is a pre-determined set of MPC parameters that serve as the "ground truth". A three-dimensional angle-delay (beamspace) representation of the measured spatial frequency response serves as a natural domain for implementing and analyzing MPC extraction algorithms. Metrics for quantifying the error in estimated MPC parameters are introduced. Initial results are presented for a greedy matching pursuit algorithm that performs a least-squares (LS) reconstruction of the MPC path gains within the iterations. The results indicate that the simple greedy-LS algorithm has the ability to extract MPCs over a large dynamic range, and suggest several avenues for further performance improvement through extensions of the greedy-LS algorithm as well as by incorporating features of other algorithms, such as SAGE and RIMAX.



https://doi.org/10.1109/GCWkshps50303.2020.9367404
Töpfer, Hannes; Ulm, Jürgen; Delkov, Dimitri
Algebraic properties of Poynting-theorem. - In: The 18th International IGTE Symposium on Numerical Field Calculation in Electrical Engineering, (2020), S. 49-52

http://dx.doi.org/10.3217/978-3-85125-740-3
Mančiâc, Žaklina J.; Cvetkoviâc, Zlata Ž.; Petkoviâc, Bojana R.; Simiâc, Nikola
Influence of the Tellegen type-bi-isotropic sphere on the homogeneity of a field generated by two toroidal electrodes. - In: Revue roumaine des sciences techniques, ISSN 0035-4066, Bd. 65 (2020), 3/4, S. 173-178

Arvinti, Beatrice; Isar, Alexandru; Toader, Dumitru; Töpfer, Hannes; Costache, Marius
Experimental stand for the study of non-sinusoidal electrical phenomena. - In: Revue roumaine des sciences techniques, ISSN 0035-4066, Bd. 65 (2020), 3/4, S. 179-184