Publikationen des InIT der TU IlmenauPublikationen des InIT der TU Ilmenau
Anzahl der Treffer: 3687
Erstellt: Mon, 01 Jul 2024 13:09:22 +0200 in 0.1214 sec


Schwind, Andreas; Hofmann, Willi; Buddappagari, Sreehari; Stephan, Ralf; Thomä, Reiner; Hein, Matthias
Bi-static reflectivity patterns of vulnerable road users in the C-V2X frequency range. - In: 2020 IEEE Radar Conference (RadarConf20), (2020), insges. 6 S.

https://doi.org/10.1109/RadarConf2043947.2020.9266284
Hofmann, Willi; Schwind, Andreas; Bornkessel, Christian; Hein, Matthias
Geometry- and angle-dependent monostatic scattering of microwave absorbers. - In: 2020 Antenna Measurement Techniques Association Symposium (AMTA), (2020), insges. 6 S.

https://ieeexplore.ieee.org/document/9280861
Schwind, Andreas; Hofmann, Willi; Stephan, Ralf; Hein, Matthias
Bi-static reflectivity measurements of vulnerable road users using scaled radar objects. - In: 2020 Antenna Measurement Techniques Association Symposium (AMTA), (2020), insges. 6 S.

https://ieeexplore.ieee.org/document/9280857
Pérez, Eduardo; Kirchhof, Jan; Krieg, Fabian; Römer, Florian
Subsampling approaches for compressed sensing with ultrasound arrays in non-destructive testing. - In: Sensors, ISSN 1424-8220, Bd. 20 (2020), 23, 6734, insges. 23 S.

Full Matrix Capture is a multi-channel data acquisition method which enables flexible, high resolution imaging using ultrasound arrays. However, the measurement time and data volume are increased considerably. Both of these costs can be circumvented via compressed sensing, which exploits prior knowledge of the underlying model and its sparsity to reduce the amount of data needed to produce a high resolution image. In order to design compression matrices that are physically realizable without sophisticated hardware constraints, structured subsampling patterns are designed and evaluated in this work. The design is based on the analysis of the Cramér–Rao Bound of a single scatterer in a homogeneous, isotropic medium. A numerical comparison of the point spread functions obtained with different compression matrices and the Fast Iterative Shrinkage/Thresholding Algorithm shows that the best performance is achieved when each transmit event can use a different subset of receiving elements and each receiving element uses a different section of the echo signal spectrum. Such a design has the advantage of outperforming other structured patterns to the extent that suboptimal selection matrices provide a good performance and can be efficiently computed with greedy approaches.



https://doi.org/10.3390/s20236734
Stichling, Marcel;
Bewertung des Ladungstransport-Verhaltens neu entwickelter Materialien für Gleichspannungs-Isoliersysteme. - Ilmenau. - 53 Seiten
Technische Universität Ilmenau, Masterarbeit 2020

Untersuchung der elektrischen Eigenschaften von Polypropylenfolien mit unterschiedlichen Beimischungen. Bestimmung der relativen Permittivität und der elektrischen Leitfähigkeit sowie dem dielektrischen Verlustfaktor in Abhängikeit der Temperatur und der Spannung. Hierzu wurden Messungen bei AC und DC durchgeführt und die Ergebnisse in geeigneter Form dargestellt.



Wagner, Christoph; Semper, Sebastian; Römer, Florian; Schönfeld, Anna; Del Galdo, Giovanni
Hardware architecture for ultra-wideband channel impulse response measurements using compressed sensing. - In: 28th European Signal Processing Conference (EUSIPCO 2020), (2020), S. 1663-1667

We propose a compact hardware architecture for measuring sparse channel impulse responses (IR) by extending the M-Sequence ultra-wideband (UWB) measurement principle with the concept of compressed sensing. A channel is excited with a periodic M-sequence and its response signal is observed using a Random Demodulator (RD), which observes pseudo-random linear combinations of the response signal at a rate significantly lower than the measurement bandwidth. The excitation signal and the RD mixing signal are generated from compactly implementable Linear Feedback Shift registers (LFSR) and operated from a common clock. A linear model is derived that allows retrieving an IR from a set of observations using Sparse-Signal-Recovery (SSR). A Matrix-free model implementation is possible due to the choice of synchronous LFSRs as signal generators, resulting in low computational complexity. For validation, real measurement data of a time-variant channel containing multipath components is processed by simulation models of our proposed architecture and the classic M-Sequence method. We show successful IR recovery using our architecture and SSR, outperforming the classic method significantly in terms of IR measurement rate. Compared to the classic method, the proposed architecture allows faster measurements of sparse time-varying channels, resulting in higher Doppler tolerance without increasing hardware or data stream complexity.



https://doi.org/10.23919/Eusipco47968.2020.9287454
Korobkov, Alexey A.; Diugurova, Marina K.; Haueisen, Jens; Haardt, Martin
Multi-dimensional model order estimation using LineAr Regression of Global Eigenvalues (LaRGE) with applications to EEG and MEG recordings. - In: 28th European Signal Processing Conference (EUSIPCO 2020), (2020), S. 1005-1009

The efficient estimation of an approximate model order is very important for real applications with multi-dimensional data if the observed low rank data is corrupted by additive noise. In this paper, we present a novel robust method for model order estimation of multi-dimensional data based on the LineAr Regression of Global Eigenvalues (LaRGE). The LaRGE method uses the multi-linear singular values obtained from the HOSVD of the measurement tensor to construct global eigenvalues. In contrast to the Modified Exponential Test (EFT) that also exploits the approximate exponential profile of the noise eigenvalues, LaRGE does not require the calculation of the probability of false alarm. Therefore, it is well suited for the analysis of biomedical data. The excellent performance of the LaRGE method is illustrated via simulations and results obtained from EEG as well as MEG recordings.



https://doi.org/10.23919/Eusipco47968.2020.9287523
Reum, Thomas; Töpfer, Hannes
A bicomplex finite element method for wave propagation in homogeneous media. - In: Compel, ISSN 2054-5606, Bd. 39 (2020), 5, S. 1031-1039

Purpose The purpose of this paper is to present the advantageous applicability of the bicomplex analysis in the context of the Finite Element Method (FEM). This method can be applied for wave propagation problems in various environments. Design/methodology/approach In this paper, the bicomplex number system is introduced and accordingly the differential equation for time-harmonic Maxwell’s equations in homogeneous media is derived in detail. Besides that, numerical simulations of wave propagation are performed and compared to the traditional approach based on classical FEM related to the Helmholtz equation. The appropriate error norm is investigated for different discretizations. Findings The results show that the use of bicomplex analysis in FEM leads to the higher accuracy of the electromagnetic field determination compared to the traditional Helmholtz approach. By using the bicomplex-valued formulation, the complex-valued electric and magnetic fields can be found directly and no additional FEM calculations are necessary to get the whole field. Originality/value The direct bicomplex formulation overcomes the use of the second order derivatives, which leads to the higher accuracy. In general, accurate calculations of the wave propagation in FEM is still an open problem and the approach described in this paper is a contribution to this class of problems.



https://doi.org/10.1108/COMPEL-01-2020-0010
Loracher, Stefanie;
Elektronisch abstimmbare transistorbasierte Induktivitäten für den Hochfrequenzbereich. - Ilmenau : Universitätsbibliothek, 2020. - 1 Online-Ressource (v, 167 Seiten)
Technische Universität Ilmenau, Dissertation 2020

Die zur Verfügung stehenden Frequenzen stellen für eine zunehmende Anzahl von Anwendungen eine zentrale Ressource dar. Die effiziente Nutzung der verfügbaren Frequenzen ist erforderlich und damit die Entwicklung von frequenzagilen Sender- und Empfängerarchitekturen. Dafür können entweder mehrere Schaltungen für die jeweiligen Frequenzen parallel aufgebaut werden, oder im Sinne der fortschreitenden Miniaturisierung konfigurierbare Schaltungen verwendet werden. Die steuerbaren Bauelemente, die für konfigurierbare Schaltungen notwendig sind, sind auf vielfältige Weise realisierbar. Die vorliegende Arbeit beinhaltet den Funktionsbeweis der transistorbasierten Induktivitätsschaltung, zeigt das Potenzial des Ansatzes und stellt Richtlinien für die Dimensionierung beziehungsweise den Aufbau der Schaltung auf. Das Potenzial als symmetrische, variierbare und miniaturisierbare Induktivität im Hochfrequenzbereich für frequenzagile Anwendungen wird untersucht. Eine Literaturrecherche zum Stand der Technik beschreibt die bisher üblichen Methoden für abstimmbare Induktivitäten und ermöglicht einen Vergleich mit der Induktivitätsschaltung. Sie ist aufgrund der Möglichkeit der Integration und Miniaturisierung eine nützliche Ergänzung für die HF-Schaltungstechnik. Analytische Untersuchungen in Kombination mit numerischen Simulationsmethoden erlauben das Ableiten von präziseren Entwurfskriterien, die nach Wissen der Autorin das erste Mal auch transistorinterne Größen berücksichtigen. Die Richtlinien werden anschließend durch die Messung realisierter Schaltungen validiert, in denen symmetrisches Verhalten.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2020000628
Memon, Aman Amir;
Localization of wireless transmitters using manifold learning. - Ilmenau. - 46 Seiten
Technische Universität Ilmenau, Masterarbeit 2020

Die Lokalisierung oder Positionierung von Benutzern ist aus verschiedenen Gründen ein unverzichtbarer Bestandteil von drahtlosen Kommunikationsnetzen. Zahlreiche standortbezogene Dienste (Location Based Services, LBS), die Teil unseres täglichen Lebens sind, hängen hauptsächlich von der Position der Benutzer innerhalb der Kanalumgebung ab. Standortinformationen sind auch wichtig für die Aufrechterhaltung und Verbesserung verschiedener netzwerkbezogener Funktionen wie Handover, Ressourcenzuweisung, Tarifanpassung und andere RRM-Funktionen des Funkressourcenmanagements. Channel Charting (CC) ist ein neuartiges, datengesteuertes Basisbandverfahren, das darauf abzielt, die niedrigdimensionale Darstellung, d.h. Kanaldiagramm unter Verwendung hochdimensionaler Channel State Information (CSI) zu erlernen, die an der Basisstation (BS) gesammelt wird, um den wahren Standort der UEs zu erhalten. Vereinfacht ausgedrückt werden virtual maps oder charts so erstellt, dass die räumlich nahe beieinanderliegenden Punkte auch im Kanaldiagramm nahe beieinander liegen. Diese Kanaldiagramme werden völlig unbeaufsichtigt erstellt, d.h. ohne Zugang zu irgendwelchen Standortinformationen an der BS. CC arbeitet, indem es Merkmale aus der CSI extrahiert, die die Nachbarschaftsinformationen zwischen den UEs bewahren, und dann unüberwachte vielfältige Lernmethoden anwendet, um die extrahierten Merkmale auf dem Kanaldiagramm abzubilden. Der jüngste Erfolg des Tiefenlernens hat gezeigt, dass neuronale Netze leistungsfähige Funktions-Approximatoren sind, die in der Lage sind, komplexe Merkmale aus Rohdaten zu extrahieren. Convolutional Neural Networks (CNNs) sind wahrscheinlich die am weitesten verbreiteten neuronalen Netze, die für die Extraktion relevanter raumzeitlicher Merkmale aus Rohdaten bekannt sind. In der vorliegenden Masterarbeit wird die Idee der Verwendung von Convolutional Neural Networks CNNs zur Lösung des CC-Problems untersucht. Convolutional AutoEncoders (CAE) bieten einen völlig unbeaufsichtigten Tiefenlernansatz, der es auch erlaubt, die Nebeninformationen wie z.B. Beschränkungen des maximalen Abstands zwischen Abtastpunkten in das Lernen einzubeziehen. Für die Merkmalsextraktion schlagen wir vor, CSI-basierte Channel Impulse Response zu verwenden. Darüber hinaus schlagen wir auch vor, einen hybriden Ansatz zu verwenden, indem wir zwei vielfältige Methoden kombinieren, nämlich (CAE) und Uniform Manifold Approximation (UMAP), um genaue Kanaldiagramme zu erstellen.