Studienabschlussarbeiten am Institut

Anzahl der Treffer: 152
Erstellt: Sun, 30 Jun 2024 18:08:13 +0200 in 0.0744 sec


Schur, Johannes;
Prozessentwicklung zur Fertigung von Zellkultursubstraten auf Basis von Hydroxylapatit. - 65 Seiten
Technische Universität Ilmenau, Masterarbeit 2016

In dieser Arbeit werden die Versuche und Herangehensweisen zur Herstellung von Zellkultursubstraten auf Basis von Hydroxylapatit beschrieben. Der Aufbau gliedert sich wie folgt: Einleitung, Methoden sowie Ergebnisse und Auswertung. Das Apatit, welches hier zum Einsatz kommt, ist neben Kollagen des Typs I Hauptbestandteil des Knochens. Daher werden zu Beginn die Knochen in Aufbau, Struktur und Funktionsweise beschrieben. Damit soll ein Verständnis für die Versuche und die Begründung für die Wahl der hier im Einzelnen behandelten Materialien vermittelt werden. Dazu sind die jeweiligen Materialien in einem Überblick bezüglich ihrer Eigenschaften, sowie Einsatz und Wichtigkeit in der Biomaterial-Forschung dargestellt. In den weiteren Kapiteln werden Synthesemethoden für das Hydroxylapatit beschrieben. Dabei haben sich drei Varianten herauskristallisiert. Zudem wird neben diesem Mineral ein Material benötigt, um dem Zellkultursubstrat eine gewisse Elastizität zu geben. Dafür ist im Knochen das Kollagen zuständig. Weiterhin existieren dessen denaturierte Formen: Kollagen-Hydrolysat und Gelatine. Diese drei Varianten sind zur Folienherstellung betrachtet worden. Nach den Erläuterungen bezüglich der Methoden werden die Ergebnisse dargestellt und ausgewertet. Bei der Folienherstellung hat sich erwiesen, dass Kollagen-Hydrolysat untauglich ist. Diese Folien sind nicht für Heißpräge- und Thermoformprozesse geeignet, da sie spröde sind. Zudem lösen sie sich innerhalb kürzester Zeit in Wasser auf. Die Gelatinefolien sind flexibel. Durch Heißprägen werden diese allerdings spröde und es kommt nicht zur Strukturübertragung. Durch Gießen kann eine Strukturierung erreicht werden, aber die Strukturen sind in einer wässrigen Umgebung nicht stabil. Poröse Gelatine hingegen ließ sich heißprägen, löste sich aber vollständig im Wasser auf. In Hydroxylapatitlösung getränkte, faserige Kollagenfolien konnten durch Thermoformen strukturiert werden. Bei geringeren Temperaturen (ca. 70 ˚C) werden Strukturen teilweise übertragen. Erhöht man die Temperatur weiter, so erfolgt eine großflächige Strukturierung, allerdings kommt es dabei zur Denaturierung des Kollagens. Die Strukturen lösen sich innerhalb einiger Stunden in Wasser auf. Allgemein wird der Einsatz von faserigen Kollagen in Verbindung mit Hydroxylapatit als mögliches Zellkultursubstrat beschrieben.



Rüdiger, Daniel;
Mikromechanische und histologische Analyse von Tumor-Gewebeschnitten auf zellulärer und suprazellulärer Ebene. - 110 Seiten
Technische Universität Ilmenau, Masterarbeit 2016

Für die Tumorentstehung und Progression ist neben der genetischen Veränderung die Wechselwirkung mit der Mikroumgebung entscheidend. Aus diesem Grund ergeben sich für die Etablierung eines organotypischen 3D-Tumormodells zwei wesentliche Anforderungen. Für eine biomechanische Optimierung muss die Mechanik des nativen Tumors und des gesunden Gewebes bekannt sein (materialseitiger Anspruch). Außerdem müssen die zellulären Zusammenhänge und Wechselwirkungen zwischen entarteten und nicht entarteten Zellen aufgeklärt werden (biologischer Anspruch). In der Arbeit wurden mechanische und histologische Untersuchungen auf zelluläre und suprazelluläre Ebene durchgeführt. Für die mechanische Untersuchung an entarteten und nicht entarteten Einzelzellen des Brustepithels wurde die kolloidale Kraftspektroskopie mit dem AFM angewandt und die Histologie durch Färbung des Aktinskeletts beurteilt. Für die Untersuchung von Brusttumorgewebe und gesundem Brustgewebe der Maus, wurde die Kraftspektroskopie mit einem mikromechanischen Testsystem und für die Histologie eine HE-Färbung und Kollagen-Färbung durchgeführt. Die Tumorzelllinie MDA-MB-231 (0,8 - 15,4 kPa) war signifikant weicher als die gesunde Zelllinie MCF-12A (2,6 - 19,3 kPa). Zurückzuführen ist dies auf eine geringere Aktinpolymerisation in Folge der EMT. Das Brusttumorgewebe war mit einem E-Modul-Bereich von 12,4 - 271 kPa signifikant steifer als das gesunde Gewebe (0,8 - 10,3 kPa). Außerdem besaß das Tumorgewebe eine größere mechanische Inhomogenität. Die Gewebeversteifung entsteht durch eine gestiegene Kollagenablagerung in der ECM (Desmoplasie). Die erhöhte Kollagenablagerung sorgt für die Bildung von Integrin-Clustern. Durch das Mechanosensing der Zellen wird über das Zytoskelett, durch die Cluster, die Genexpression verändert und bewirkt eine weitere Versteifung der ECM durch Produktion von ECM-Komponenten durch Tumorzellen und Stromazellen. Damit existiert eine direkte Verbindung der genetischen Faktoren und Umgebungs-Faktoren für eine Tumorentwicklung. Mit der LCM-Plattform kann ein Scaffold-basiertes 3D Modell im Bereich der Tumorsteifigkeit erstellt werden. Für die Untersuchung der mechanischen Auswirkung der Mikroumgebung auf Tumorzellen ist eine Monokultur möglich. Jedoch sollte für Untersuchung neuer Therapeutika die Wechselwirkung zwischen Tumorzellen und Stromazellen berücksichtig werden. Dazu eignet sich eine Cokultur, für eine bessere in vivo Annäherung.



Brunnquell, Simon;
Elektrische Charakterisierung von L929 Fibroblasten mittels Mikroelektroden. - Ilmenau : Universitätsbibliothek. - 1 Online-Ressource (VII, 59 Seiten)
Technische Universität Ilmenau, Masterarbeit 2016

Ziel dieser Arbeit war es, Signale von Zellen mittels Mikroelektroden aufzunehmen und mit einer Whole-Cell-Clamp Anordnung als etablierte Referenzmethode eine simultane Messung vorzunehmen. Bei der Auswertung der Signale der Zelle sollten dann überdies die elektrischen Eigenschaften der Mikroelektroden mit berücksichtigt werden. Einen Schwerpunkt der Arbeit bildete aber vor allem der Prozess der Herstellung der Mikroelektroden aus Kohlefasern und Bonddrähten aus Gold. Im Rahmen dieser Arbeit ist es aber nicht gelungen, eine simultane Messung durchzuführen. Genauso wenig ist es gelungen, Unterschiede der Signale der Mikroelektroden alleine im Vergleich zu Signalen der Mikroelektroden in Kontakt mit den Zellen auszumachen. Jedoch konnten schließlich die elektrischen Eigenschaften einer Mikroelektrode im Zuge einer Verdünnungsreihe mittels Impedanzspektroskopie präzise untersucht werden.



http://nbn-resolving.de/urn:nbn:de:gbv:ilm1-2016200046
Schkölziger, Sarah;
Untersuchungen zum Einfluss physikochemischer Parameter von Biomaterialien auf die Adhäsion von Staphylococcus aureus und Staphylococcus epidermidis. - 91 Seiten
Technische Universität Ilmenau, Masterarbeit 2016

Mikroorganismen treten in der Natur fast immer in Form von Biofilmen auf verschiedensten Oberflächen auf. Aber auch auf medizinischen Geräten und auf Implantaten können sich Biofilme bilden, was im menschlichen Körper zu Infektionen und Entzündungen, oder zum Funktionsverlust von Implantaten führen kann. Aus diesem Grund gewinnt die Entwicklung von Antifouling-Strategien zunehmend an Bedeutung. Da die Bildung eines Biofilmes durch die Adhäsion von Bakterien an die Oberfläche initiiert wird, beruhen die Strategien immer häufiger auf der Unterbindung der Adhäsion. In dieser Arbeit wurde der Einfluss von physikochemischen Oberflächeneigenschaften von Biomaterialien auf die bakterielle Adhäsion untersucht. Dazu wurden dynamische Adhäsionskinetiken, durch welche sich realitätsnahe Bedingungen schaffen ließen, mit vier verschiedenen Konzentrationen einer Mischkultur aus Staphylococcus aureus und Staphylococcus epidermidis durchgeführt. Als Modelloberflächen dienten mit TEGO®Phobe beschichtete Objektträger, welche im Sauerstoffplasma funktionalisiert wurden, um eine abgestufte Benetzbarkeit und Ladung der Oberfläche einzustellen. Durch die Ermittlung von zeit-und konzentrationsunabhängigen Parametern sollte schließlich eine materialspezifische Bewertung der Modelloberflächen ermöglicht werden. Die Untersuchungen ergaben, dass die bakterielle Adhäsion abhängig von der Zeit, von der Bakterienkonzentration und von den physikochemischen Eigenschaften der Biomaterialoberfläche ist. So wurde durch Extrapolation der Oberflächenbesiedlung bei sehr niedrigen und bei unendlich hohen Bakterienkonzentrationen festgestellt, dass der physikochemische Einfluss der Materialoberfläche mit steigender Bakterienkonzentration abnimmt. Bei sehr geringen bis moderaten Konzentrationen ist nachweislich die Affinität der Mischkultur zu sehr hydrophilen Oberflächen deutlich geringer als zu hydrophoberen Oberflächen. Dieser Effekt beruht vermutlich auf unterschiedlichen Wasserstrukturen, welche sich abhängig von der Benetzbarkeit der Oberfläche ausbilden. Für die Entwicklung neuer Antifouling-Konzepte ist es demnach empfehlenswert, den Einfluss der Hydrophilie von Biomaterialien zu berücksichtigen. Jedoch muss beachtet werden, dass die in dieser Arbeit erzielten Ergebnisse nur für die eingesetzten Infektionserreger und die gewählten Systembedingungen gültig sind.



http://www.gbv.de/dms/ilmenau/abs/852150504schko.txt
Wang, Zizun;
Integration of microfluidics in 3D cell culture : applications in tissue engineering and oncology. - 106 S. : Ilmenau, Techn. Univ., Masterarbeit, 2015

Die miniaturisierten Geräte erhalten in der Biotechnologie immer mehr Aufmerksamkeit. Sie werden einerseits immer verbreiteter und zudem stetig kleiner. In dieser Arbeit werden zwei Lab-on-a-Chip-Systeme für zwei verschiedene 3D-Zellkulturen mit integrierter Mikrofluidik entwickelt. Beide Lab-on-a-Chip-Systeme werden mithilfe von Mikrofabrikation entwickelt, um benutzerdefinierte Geometrien zu realisieren und die physiologisch ähnlichen Strukturen zu replizieren. Der erste Mikrofluidik-Chip wurde mit Polycarbonat durch Computerized Numerical Control (CNC) Fräsen hergestellt. Somit kann ein Mikrokanal gefertigt werden, der eine endotheliale 3D-Zellkultur ermöglicht. Dieser kann vollständig mit einem biokompatiblen Hydrogel (Kollagen Typ I oder Fibrin) gefüllt werden und ist perfundierbar. In dieser Arbeit ließen sich die Zellen bis zu 63 h im Mikrokanal kultivieren. Der zweite Mikrofluidik-Chip wurde durch kombinierte Verwendung von 3D-Druck und CNC sowie Polymer-Technologie aufgebaut. Er enthält einen Konzentrationsgenerator und kann zum Laden der Zellsphäroide verwendet werden. Diese Masterarbeit befasst sich mit häufig auftretenden Problemen der Mikrofluidik in Lab-on-a-Chip-Systeme. Um ein stabiles System zu erhalten, müssen die Probleme in Bezug auf Luftblasen und das periphere Perfusionssystem betrachtet und gelöst werden.



Drosten, Johannes;
Etablierung eines Niederdruckplasma-Verfahrens zur langzeitstabilen Hydrophobisierung von Polymer-Mikrofluid-Systemen sowie fluidische Untersuchung der Systeme für Life Science Applikationen. - 124 S. : Ilmenau, Techn. Univ., Masterarbeit, 2015

Das Ziel dieser Arbeit ist es, eine langzeitstabile, hydrophobe Beschichtung für den segmentierten Fluss in Polykarbonat-Chipsystemen zu erzeugen. Hierfür wird in einem Niederdruckplasma aus dem Präkursorgas Oktafluorocyclobutan ein transparentes Plasmapolymer mit PTFE-ähnlichen Eigenschaften generiert. Der Einfluss verschiedener Parameter bei der Polymerisation auf die entstehende Beschichtung wird untersucht und die Beschichtungen charakterisiert. Anhand festgelegter Mindestanforderungen wird die Funktion der Beschichtung nachgewiesen und ihre Vorteile sowie ihre Schwachpunkte herausgearbeitet.



Ehrhardt, Julia;
Etablierung eines Untersuchungsmodells zur Freisetzung eines Ca(2+)-Kanalblockers aus organomimetisch kultivierten HepG2-Zellen. - 94 S. : Ilmenau, Techn. Univ., Masterarbeit, 2015

Innovative Forschungsansätze verfolgen das Ziel, dreidimensionale zelluläre Aggregate unterschiedlicher Ursprungsorgane in sogenannten "Body-on-a-Chip"- Systemen zu assemblieren. Daher soll in vorliegender Arbeit ein Untersuchungsmodell zur Freisetzung eines Ca(2+)-Kanalblockers aus einer Wirkstoffvorstufe durch Hepatokarzinom-Zellen, die in Polycarbonatscaffolds organomimetisch kultiviert wurden, etabliert werden. Dazu wurde die Umsetzung der diacetylierten Vorstufe des Ca(2+)-Kanalblockers Dihydropyrimidin (DHPM) in scaffoldkultivierten HepG2-Kulturen zeitlich und quantitativ mit Hilfe von HPLC/MS Analytik untersucht. Entscheidend für die Stabilität der Wirkstoffvorstufe ist die Wahl eines geeigneten Lösungsmittels, in dem die diacetylierte Vorstufe des DHPMs über einen Zeitraum von 6 h beständig ist. Basierend auf Stabilitätsuntersuchungen in verschiedenen Medien wurde DMSO/PBS als geeignetes Lösungsmittel für weiterführende Untersuchungen eingeschätzt. Eine Metabolisierung des in DMSO/PBS gelösten diacetylierten DHPMs zu den Produkten mono- und deacetyliertem DHPM durch HepG2-Zellen konnte quantitativ nachgewiesen werden. Die toxische Wirkung der Substanzen auf die Hepatokarzinom-Zellen wurde mittels etablierter zellbiologischer Methoden überprüft. Dabei wurde festgestellt, dass höhere Konzentrationen als 10 [my]g/ml des diacetyliertem DHPMs die Vitalität der Zellen negativ beeinflussen. Im weiteren Teil der Arbeit wurde die inhibierende Wirkung von DHPM und dessen di- und monoacetylierte Vorstufen auf die in Kardiomyozyten lokalisierten Kalziumkanäle analysiert. Im Bezug dazu wurden kontrahierende Kardiomyozyten aus murinen P19-Zellen differenziert und die Kanalblockeraktivität mikroskopisch und mittels Multielektrodenarray (MEA) untersucht. Eine inhibierende Wirkung der Ca(2+)-Kanäle durch Applikation von DHPM wurde dabei detektiert. Die Zugabe von di- und monoacetyliertem DHPM zeigte keinerlei Beeinflussung der Kanalblockeraktivität. Abschließend wurde ein chipbasiertes, gekoppeltes Untersuchungssystem beider Zellkulturen auf Basis festgelegter Randbedingungen konzipiert. Dadurch ist es in Zukunft möglich, die dreidimensionalen zellulären Aggregate beider Ursprungsorgane in einem sogenannten "Body-on-a-Chip"-System zu kultivieren.



Damm, Stephanie;
Technologieentwicklung für komplexe Cell-Sheet-Layer-Systeme. - 87 S. : Ilmenau, Techn. Univ., Masterarbeit, 2015

Die vorliegende Arbeit beschreibt die Entwicklung von mehrlagigen folienbasierten Strukturen basierend auf Cell-Sheet-Layer-Systemen, die anhand eines abstrahierten Leber-Sinusoids demonstriert werden. Es werden verschiedene Technologien zur Herstellung mehrlagiger Cell-Sheet-Layer vorgestellt. Die Form- und Beschichtungsstrategien dieser Substrate kann Einfluss auf das Wachstum der Zellen nehmen. Als Ausgangsbasis der Trägersubstanz dient Polycarbonat-Folie mit einer Dicke von 50 [my]m, die durch den Mikrothermoformprozess die gewünschte Mikro-Topografie erhält. Es ist ein transparentes und biokompatibles Material, welches durch lokal begrenzte Oberflächenfunktionalisierungen während oder nach der topografischen Modellierung die Zelladhäsion auf den Trägern ermöglicht. Zunächst werden die vorhandene Technologie und das Werkzeug für die Mikro-Topografie optimiert, um so die gezielte Zellkultivierung zu ermöglichen. Die Polycarbonat-Folien werden nach dem Mikrothermoformprozess auf verschiedene Strategien der Zellbesiedlung untersucht. Das Cell-Sheet-Layer-System soll ein abstrahiertes Leber-Sinusoid beschreiben. Daher werden für die Außenseite des Substrates die humanen Hepatozyten Zelllinien HepG2 und für die Innenseite des Cell-Sheet-Layers die Maus-Fibroblasten Zelllinie L929 bzw. die Endothelzellen der EA.hy926-Zelllinie zur Zellbesiedlung gewählt. Im Verlauf der Zelluntersuchungen zeigte sich, dass die chemische Oberflächenmodifizierung während des Mikrothermoformprozesses Einflüsse auf die kultivierten Zelllinien ausübt. Aus diesem Grund werden alternative Methoden zur Funktionalisierung der Polycarbonat-Folie entwickelt. In diesem Verfahren wird das Substrat erst nach dem Mikrothermoformprozess funktionalisiert, um eventuelle Änderungen der Beschichtungsstoffen beim Erhitzen zu umgehen. Mit dieser Methode werden die besten Zellkultivierungsergebnisse erreicht. Um die Zellkultivierung auf einem Cell-Sheet-Layer-System in einer angepassten Mikro-Umgebung zu ermöglichen, wird ein Zellkultivierungssystem entwickelt, welches die fluidische Umgebung der Zellen berücksichtigt. In diesem System wird eine Trägersubstanz mit humanen Hepatozyten Zellen erfolgreich kultiviert. Insgesamt konnten Cell-Sheet-Layer aus Polycarbonat mit verschiedenen Zelllinien als einfache Zellkultur und als Ko-Kultur kultiviert werden. Diese Methode kann weiterentwickelt werden, um in weiteren Versuchen durch Stapeln der Folien eine dreidimensionale Struktur zu bilden.



Wenzel, Christin;
Einfluss von Oberflächentopographie und -Chemie auf das Wachstum und die Ausrichtung Osteoblasten-ähnlicher Zellen. - 96 S. Ilmenau : Techn. Univ., Masterarbeit, 2014

Eine Strategie die Osteointegration von Knochenimplantaten zu verbessern, ist die Übertragung von anisotropen Strukturen auf Implantatoberflächen. Die mikrostrukturierten Oberflächen beeinflussen die Zelladhäsion, -proliferation, -morphologie und die -ausrichtung. Zur chemischen, physikalischen und topographischen Mikrostrukturierung von Biomaterialoberflächen haben sich besonders Soft Lithographie-Techniken als geeignet herausgestellt. Zeil dieser Arbeit war es die Zellproliferation, -morphologie sowie -ausrichtung von Osteoblasten-ähnlichen Zellen in Abhängigkeit von verschiedenen topographisch mikrostrukturierten Oberflächen zu untersuchen. Dabei wurden zum einen Mikrostrukturen auf hydrophile Oberflächen aus Dextran (Titan beschichtet mit Dextran) und zum anderen auf hydrophobe Oberflächen aus Polydimethylsiloxan (PDMS) übertragen. Die Mikrostrukturen unterschieden sich hinsichtlich des Mustertyps und der Strukturgröße (Abmessungen). Die mikrostrukturierten PDMS- und Dextranoberflächen wurden mittels Replica Molding erzeugt und vor sowie nach dem Zelltest mit Osteosarkomzellen mittels Lichtmikroskop, Rasterelektronenmikroskop sowie konfokalem Laser Scanning Mikroskop charakterisiert. Vergleicht man die Zellzahlen von mikrostrukturierten Dextranoberflächen mit denen von PDMS-Oberflächen stellt man fest, dass die Zellzahlen bei PDMS-Oberflächen höher sind. Jedoch ist die Zellzahl für beide Materialien unabhängig von der Mikrostruktur. Das Aspektverhältnis der Osteosarkomzellen und der prozentuale Anteil ausgerichteter Zellen steigen je kleiner die Strukturgröße eines jeden Mustertyps ist. Die Linienmuster induzieren im Vergleich zu Rechteck- und Rautenmustern die höchste Anzahl gespreiteter und ausgerichteter Zellen. Des Weiteren stellte sich heraus, dass bei mikrostrukturierten Dextranoberflächen im Vergleich zu PDMS-Oberflächen der prozentuale Anteil ausgerichteter Zellen um bis zu 30 % höher war. Mit dieser Studie konnte gezeigt werden, dass die Zellproliferation, -spreitung und die -ausrichtung von Osteosarkomzellen durch die Mikrostrukturen und die Chemie des Materials kontrolliert und eingestellt werden kann. Durch die Verwendung der Replica Molding-Technik können Mikrostrukturen leicht auf Implantatoberflächen übertragen werden um diese zu funktionalisieren. Dies wurde in dieser Arbeit erfolgreich für Titanoberflächen gezeigt. Durch die Nachbildung der Knochengewebsstruktur auf Implantatoberflächen wird sich eine Erhöhung der Langzeitstabilität und demnach eine Verbesserung der Lebensqualität von Patienten erhofft.



Soh, Joanne Zi En;
Microsegmented flow-through synthesis of gold nanocubes. - 41 S. Ilmenau : Techn. Univ., Masterarbeit, 2014

Goldnanopartikel weisen einzigartige Eigenschaften auf, welche sie für ein großes Spektrum möglicher Anwendungen prädestinierten. Sie finden beispielsweise bereits als funktionelle Bestandteile in Sensoren, elektronischen Schaltungen oder in der heterogenen Katalyse Anwendung in verschiedenen Gebieten der Nanotechnologie. In dieser Arbeit wird ein segmentbasiertes Mikrodurchflussverfahren zur Herstellung einkristalliner Goldnanokuben als vorteilhafte Methode zur Syntheseführung, verglichen mit konventionellen Batch-Ansätzen, vorgestellt. Das Herstellungsverfahren basiert auf der nass-chemischen Reduktion von Au3+-Ionen aus Tetrachlorogoldsäure in Gegenwart des Ligands CTAC (Cetyltrimethylammoniumchlorid) und erfordert drei Syntheseschritte. Zunächst werden in einem Mikrodurchflussprozess seed-Partikel synthetisiert. Im Folgenden werden diese seed-Partikel in einem ersten Wachstumsschritt, welcher ebenfalls im segmentbasierten Mikrodurchflussverfahren ausgeführt wird, vergrößert. Das abschließende Wachstum im dritten Syntheseschritt erfolgt im klassischen Laborgefäß. Die kolloidalen Lösungen der Au-seed-Nanopartikel und der Au-Nanokuben wurden mithilfe differentieller zentrifugaler Sedimentationsspektroskopie (DCS), UV-Vis-Spektralphotometrie und Rasterelektronenmikroskopie (REM) analysiert. Die aus den Experimenten erhaltenen Nanopartikel zeigten homogene Ensembleeigenschaften ohne Hinweise auf mögliche Aggregation. Die mikrofluidisch hergestellten Gold-seed-Nanopartikel hatten einen mittleren Teilchendurchmesser von 2,6 nm mit einer Halbwertsbreite der Größenverteilung von 1,5 nm. Aus diesen seed-Nanopartikeln konnten Goldnanokuben mit, im Bereich zwischen 50 und 80 nm, einstellbaren Kantenlängen, bei jeweils schmalen Teilchengrößenverteilungen und hoher Ausbeute an gewünschter Form, hergestellt werden. Es wurde weiterhin gefunden, dass die Wachstumszeit der Partikel im letzten Syntheseschritt einen großen Einfluss auf die Partikelform hat. Ein Zeitintervall von 8 Minuten war ausreichend zur Ausbildung der gewünschten kubischen Form. Mit Hilfe der Mikroreaktionstechnik gelang die reproduzierbare Herstellung homogener Nanopartikel mit schmalen Teilchengrößenverteilungen. Entsprechend der Analysedaten kann geschlussfolgert werden, dass die Synthesemethode unter Anwendung des Prinzips des mikrosegmentierten Flusses dazu verhalf, die Produktqualität aufgrund vorteilhafter Mischbedingungen durch die segmentinterne Konvektion und damit einhergehenden kürzeren Nukleationsintervallen, zu verbessern.